
Uppsala Master’s Theses in
Computing Science 286

Examensarbete DV3
2004-12-24
ISSN 1100–1836

An AMD64 Backend for HiPE:

Implementation, Performance Evaluation, and

Lessons Learned

Daniel Luna

luna@update.uu.se

Information Technology

Computing Science Department

Uppsala University

Box 337

S-751 05 Uppsala

Sweden

Abstract

This master’s thesis describes the construction of the AMD64 back-
end for the HiPE (High Performance Erlang) native code compiler,
a part of Erlang’s primary implementation, the Erlang/OTP. More
specifically it describes the work done when writing the compiler
backend, some implementation choices that had to be made, and
the performance effect of these choices.

This thesis consists of two papers; the first describes the internals
of the compiler backend, technical issues that had to be addressed
in its development, and reports on its performance compared to the
older HiPE backends and interpreted Erlang code. The second paper
takes a deeper look at AMD64 backends in general, examines a few
different implementation options and reports on their performance.

Supervisor & Reviewer: Konstantinos Sagonas kostis@it.uu.se

Passed:

1 Introduction

Modern computers are equipped with more memory than before and can there-
fore run programs that are bigger and more memory demanding. Even today
there are programs that reach the memory limit for 32 bit machines. Unfortu-
nately a 32 bit register only allows 232 different values, thus limiting the available
address space to 4 GB. With 64 bit registers this problem is pushed well into
the future.

AMD64 from AMD is a 64 bit processor family1 that also allows already
existing 32 bit x86 programs to be run side-by-side with newer 64 bit programs.
This advantage, together with the affordability of the architecture, is what made
us choose AMD64 as the target for a 64 bit backend for HiPE.

HiPE (High Performance Erlang) is a native code compiler for Erlang, a con-
current functional programming language designed for developing large-scale,
distributed, fault-tolerant systems. The primary implementation of Erlang, the
Erlang/OTP, is by default based on a virtual machine interpreter (BEAM);
but with HiPE also allows the user to natively compile those parts of the code
where the speedups are worth the larger code size and longer compilation times,
and keep the non-time-critical part of the application in interpreted code (i.e
bytecode).

The HiPE compiler is currenly available for the x86, SPARC V8+, PowerPC
and – since recently – AMD64 architectures. This master’s thesis presents the
work of creating the AMD64 backend of HiPE. It consists of two papers that
each describe different parts of that process and how other compiler writers
might benefit from our experience. This introductory text summarizes these two
papers and also tries to present ideas on future improvements for HiPE/AMD64.

The work presented here has been part of Erlang/OTP since R10B-02.

2 “HiPE on AMD64”

The first paper[1] describes the porting of HiPE to the AMD64 architecture and
its target readership are developers from the Erlang community. It discusses
technical issues that had to be addressed during the development of the port,
and reports on the speedups compared with BEAM.

While the paper includes a brief overview of the AMD64 architecture and
HiPE’s rôle in Erlang/OTP, the main contributions are the new compiler back-
end and the changes to the runtime system. Some of the efforts spent on the
project was also aimed at making HiPE and Erlang/OTP 64 bit clean, some-
thing that was believed to be true at the start of the project. This problem
manifested all through the work on the different parts of the AMD64 backend.

The paper describes how the AMD64 runtime system was created from one
existing for x86. For instance, the creation of code stubs for interpreted Erlang
functions had to be rewritten to allow for a 64 bit address space, while the code
for signal handling could be kept as it was. At the end, about a third of the code
could be shared by the x86 and the AMD64 runtime systems. These changes
also resulted in a cleaner runtime system with higher performance on 64 bit
machines.

1Intel’s server architecture EM64T is binary compatible with AMD64.
2Available at http://www.erlang.org/.

A detailed description of the AMD64 backend appears in section 5 of the
paper. While the changes to allow for more registers were straightforward, other
problems were more difficult to address. For instance, AMD64 has inherited
from x86 a 32 bit upper limit on the size of immediates, with the sole exception
of the new mov reg imm64 instruction. This forces the use of an extra register
whenever a 64 bit constant is needed. This happens, for instance, with references
to jump tables. This section also explains why SSE2, instead of x87, was chosen
for the floating point processor support, and furthermore goes into detail on the
construction of the assembler.

In the performance evaluation it can be seen that the newly developed
HiPE/AMD64, when compared to interpreted code, has noticeable speedups
across a range of Erlang programs. These speedups are comparable to, and
often better than, the ones for the more mature x86 and SPARC backends.

3 “Super Size your Backend: Advice on how to

Develop an Efficient AMD64 Backend”

The second paper[2] focuses on how other compiler writers might benefit from
the work done on HiPE/AMD64. It describes how an AMD64 compiler backend
can be created from one for x86, and offers advice based on our experiences.
This paper describes issues related to developing an efficient AMD64 backend
in general and uses HiPE/AMD64 as an example of this process.

In the performance evaluation it can be seen that compared with 32 bit mode
the 64 bit mode is, in general, faster. Unfortunately 64 bit programs are larger,
but this is almost always a price worth paying.

Since HiPE has the advantage of having four different register allocators the
paper also tries to give advice on which to choose. With the greater amount of
registers for the AMD64, the choice of allocator is not as important as for the
x86, and the quick answer is that for most applications the linear scan allocator
described in [3] achieves almost as good results as the more complex graph
coloring allocators.

For the benchmarks in the paper it is unclear whether there is any gain
in reserving registers for parameter passing, but for some applications this is
very useful, so the answer must be yes. The performance evaluation ends with
a comparison between the SSE2 and x87 floating point units, and a note on
whether to use the native stack or simulate it.

The AMD64 platform offers an opportunity for compiler writers to compile
for an additional target with moderate effort and, since most compilers already
have an x86 32 bit backend, is also a good choice for any compiler’s first 64 bit
backend.

4 The Future and Conclusions

Writing this compiler backend has been fun and, in some sense, successful.
With the HiPE compiler’s new backend, the advantages of 64-bit architectures
are available to Erlang developers. There are some future improvements that
could be done, though.

Since the differences between the x86 and AMD64 HiPE backends are small,
it is possible to merge many of the files. Using macros, large parts of the AMD64
compiler backend could be changed into a few include statements and some
glue code. This would help to keep the backends in sync and decrease the burden
of their maintainance.

Another possible improvement is to implement support for conditional as-
signments. Since AMD64 is a rather new architecture, all AMD64 compliant
processors support them. Some parts of the compiler (most notably the code
generated for large case statements) would benefit from using conditional as-
signments instead of jumps, thus allowing for better hardware branch prediction.
This, and other processor-specific optimizations, is a project for the future.

Also worth noting is that when HiPE/x86 got its floating point support a
few years ago, not all x86 processors had SSE2 support and a design decision
was made to use the x87 stack instead. With the newer AMD64 architecture
all processors have support for these instructions and HiPE/AMD64 uses SSE2
by default. This option could be backported into the x86 backend.

Finally, I want to note that the development of HiPE/AMD64 has been a
very valuable and rewarding experience.

References

[1] D. Luna, M. Pettersson, and K. Sagonas. HiPE on AMD64. In Proceedings

of the 2004 ACM SIGPLAN workshop on Erlang, pages 38–47. ACM Press,
2004.

[2] D. Luna, M. Pettersson, and K. Sagonas. Super size your backend: Advice
on how to develop an efficient AMD64 backend. Oct. 2004.

[3] M. Poletto and V. Sarkar. Linear scan register allocation. ACM Trans. Prog.

Lang. Syst., 21(5):895–913, Sept. 1999.

HiPE on AMD64

Daniel Luna

luna@update.uu.se

Mikael Pettersson

mikpe@it.uu.se

Konstantinos Sagonas

kostis@it.uu.se

Computing Science
Department of Information Technology

Uppsala University, Sweden

ABSTRACT

Erlang is a concurrent functional language designed for de-
veloping large-scale, distributed, fault-tolerant systems. The
primary implementation of the language is the Erlang/OTP
system from Ericsson. Even though Erlang/OTP is by de-
fault based on a virtual machine interpreter, it nowadays
also includes the HiPE (High Performance Erlang) native
code compiler as a fully integrated component.

This paper describes the recently developed port of HiPE
to the AMD64 architecture. We discuss technical issues that
had to be addressed when developing the port, decisions
we took and why, and report on the speedups (compared
with BEAM) which HiPE/AMD64 achieves across a range
of Erlang programs and how these compare with speedups
for the more mature SPARC and x86 back-ends.

Categories and Subject Descriptors

D.3.4 [Programming Languages]: Processors—Code gen-
eration; D.3.4 [Programming Languages]: Processors—
Incremental compilers; D.3.4 [Programming Languages]:
Processors—Run-time environments; D.3.2 [Programming
Languages]: Language Classifications—Applicative (func-
tional) languages

General Terms

Experimentation, Measurement, Performance

Keywords

Erlang, native code compilation, AMD64

1. INTRODUCTION
Erlang is a functional programming language which effi-

ciently supports concurrency, communication, distribution,
fault-tolerance, automatic memory management, and on-line
code updates [3]. It was designed to ease the development
of soft real-time control systems which are commonly de-
veloped by the telecommunications industry. Judging from

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Erlang’04, September 22, 2004, Snowbird, Utah, USA.
Copyright 2004 ACM 1-58113-918-7/04/0009 ...$5.00.

commercial applications written in Erlang and the increased
interest in the language, as witnessed e.g. by the number of
downloads and the level of activity on the Erlang mailing
list, the language is quite successful in this domain.

The most widely used implementation of the Erlang lan-
guage, the Erlang/OTP system from Ericsson, has been,
till recently, exclusively based on the BEAM virtual ma-
chine interpreter. This and the fact that Erlang is a dy-
namically typed language requiring runtime type tests make
the performance of Erlang programs quite slow compared
with “equivalent” programs written in other functional lan-
guages.

The HiPE native code compiler [9, 10]1 has been devel-
oped with the aim of reducing this performance gap. It
achieves this goal while allowing fine-grained, user-controlled
compilation of Erlang functions or modules to native ma-
chine code. As reported in [9], HiPE is currently the fastest
Erlang implementation and offers performance which is com-
petitive with other implementations of strict functional lan-
guages such as Bigloo Scheme or SML/NJ.

Before we started working on the project whose results we
report here, the latest open source release of Erlang/OTP
was R9C-0.2 The HiPE compiler is an integrated component
in that release and its available back-ends are for SPARC
V8+ and for x86, both running in 32-bit mode. As 64-bit
architectures offer significant advantages for large-scale ap-
plications (e.g., they allow a much less restricted address
space) and are becoming more and more widespread, we
wanted to develop a 64-bit back-end for HiPE. Although
we briefly considered IA-64 and SPARC64, our chosen plat-
form was the AMD64. Reasons for this choice were the
similarity of this platform with the x86 (see Section 2), its
upcoming importance,3 and the affordability of these ma-
chines. We have developed an AMD64 back-end for HiPE,
called HiPE/AMD64, running on Linux, and we report on
aspects of its implementation in this paper.

Contributions. Our first contribution is indirect and only
briefly described in the paper: As a by-product of our en-
gagement in this feat, we have cleaned up the Erlang/OTP
runtime system and improved its performance on 64-bit ar-
chitectures. Our second contribution is technical: We de-
scribe in detail the architecture, its design decisions, and

1
See also HiPE’s homepage: www.it.uu.se/research/group/hipe/.

2
Available at www.erlang.org.

3
About three months after we literally assembled an AMD Athlon 64

based PC by buying its parts individually on the net, Sun announced
its Sun Fire V20z server, the first in a new line of AMD Opteron 64
based servers from Sun; see www.sun.com/amd/.

solutions to technical issues that had to be addressed for
the development of HiPE/AMD64, and report on its perfor-
mance. Our final contribution, probably of more interest to
the vast majority of the Erlang community, is the system
itself which will be included in the upcoming open source
release of Erlang/OTP R10.

Organization. The rest of this paper starts with a brief
overview of characteristics of the AMD64 architecture (Sec-
tion 2) and continues with reviewing the organization of
the HiPE compiler in Section 3. The main part of this
paper describes the HiPE/AMD64 back-end in detail (Sec-
tion 5) and the support it requires from the runtime system
of Erlang/OTP (Section 4). Section 6 contains performance
results, while in Section 7 we list some advantages of disad-
vantages of AMD64 from the perspective of an Erlang user.
Finally, Section 8 finishes with some concluding remarks.

2. AN OVERVIEW OF AMD64
AMD64 is a family of general-purpose processors for server,

workstation, desktop, and notebook computers [1].
Architecturally, these processors are 64-bit machines, with

64-bit registers (16 integer and 16 floating-point) and 64-bit
virtual address spaces. An important feature is that they
are fully compatible with 32-bit x86 code. AMD64 proces-
sors can run 32-bit operating systems and applications, 64-
bit operating systems and applications, or 64-bit operating
systems with 32-bit applications.

A distinguishing implementation feature of the current
AMD64 processors is their integrated memory controllers,
which increase bandwidth and reduce latencies for memory
accesses. Another implementation feature is that the server
processors support multiprocessing (up to 8-way) without
the need for external support components, which reduces
the cost and complexity of such systems.

Although the design originated from AMD, Intel has an-
nounced that it will release software-compatible 64-bit pro-
cessors in the near future.4

2.1 Technical Summary
Here we summarize the technical aspects of AMD64 that

are relevant for compiler writers. Many of these are shared
with x86; differences from x86 are described later.

• Instructions are in 2-address form, i.e. dst op= src.
Although operating on registers is generally faster, most
instructions allow either dst or src, but not both, to
be memory operands. A memory operand is the sum of
a base register, a scaled index register, and a constant
offset, where most parts can be omitted.

• The AMD64 has 16 general-purpose registers and 16
floating-point registers, all 64-bit wide. Instructions on
32-bit integers automatically zero-extend their results
to 64 bits (32-bit operands are default on AMD64),
while instructions on 16 or 8-bit integers leave the
higher bits unchanged.

• The implementations use pipelining, and out-of-order
and speculative execution of instructions; this means
that branch prediction misses are expensive.

4
Intel calls this Intel r© EM64T (Extended Memory 64 Technology)

though; see www.intel.com/technology/64bitextensions/.

• The dynamic branch prediction hardware has a buffer
that remembers whether a given branch is likely to be
taken or not. When a branch is not listed in the buffer,
the static predictor assumes that backward branches
are taken, and forward branches are not taken.

• There is direct support for a call stack, pointed to by
the %rsp general purpose register, via the call, ret,
push and pop instructions.

• The return stack branch predictor has a small circular
buffer for return addresses. A call instruction pushes
its return address both on the stack and on this buffer.
At a ret instruction, the top-most element is popped
off the buffer and used as the predicted target of the
instruction.

• Instructions vary in size, from one up to fifteen bytes.
The actual instructions opcodes are usually one or two
bytes long, with prefixes and suffixes making up the
rest. Prefixes alter the behaviour of an instruction,
while suffixes encode its operands.

For code optimizations, there are a few general but im-
portant rules to obey (cf. also [2]):

1. Enable good branch prediction. Arrange code to follow
the static branch predictor’s rules. Ensure that each
ret instruction is preceded by a corresponding call

instruction: do not bypass the call stack or manipulate
the return addresses within it.

2. Many instructions have different possible binary en-
codings. In general, the shortest encoding maximizes
performance.

3. Keep variables permanently in registers when possible.
If this is not possible, it is generally better to use mem-
ory operands in instructions than to read variables into
temporary registers before each use.

4. Ensure that memory accesses are to addresses that are
a multiple of the size of the access: a 32-bit read or
write should be to an address that is a multiple of 4
bytes. Reads and writes to a given memory area should
match in address and access size.

2.2 Differences from x86
The main differences from x86, apart from widening reg-

isters and virtual addresses from 32 to 64 bits and doubling
the number of registers, concern instruction encoding, elim-
ination of some x86 restrictions on byte operations, and the
new floating-point model.

The x86 instruction encoding is limited to 3 bits for reg-
ister numbers, and 32 bits for immediate operands such as
code or data addresses. AMD64 follows the x86 encoding,
with one main difference: the REX prefix.

The REX prefix, when present, immediately precedes the
instruction’s first opcode byte. It has four one-bit fields, W,
R, X, and B, that augment the instruction’s x86 encoding.
As mentioned previously, even though AMD64 is a 64-bit
architecture, most instructions take 32-bit operands as de-
fault. The W bit in the REX prefix changes instructions to
use 64-bit operands. The R, X, and B bits provide a fourth
(high) bit in register number encodings, allowing access to

the 8 new registers not available in the x86. The REX pre-
fix uses the opcodes that x86 uses for single-byte inc and
dec instructions. On AMD64, these instructions must use a
two-byte encoding.

On AMD64 immediate operands, such as address or data
constants, are limited to 32 bits just as on x86. This means
that branches, calls, and memory accesses cannot directly
access arbitrary locations in the 64-bit address space; such
accesses must in general be indirect via a pointer register.
To simplify the construction of 64-bit constants, AMD64 has
a new instruction which takes a 64-bit immediate operand
and copies it into a specific register.

On AMD64 any general purpose register can be used in a
load or store operation accessing its low 8 bits. On x86 only
registers 0–3 can be used in this way, since register numbers
4–7 actually denote bits 8 to 15 in these registers in byte
memory access instructions.5

Every AMD64 processor implements the SSE2 floating-
point instruction set, which is register-oriented with 16 reg-
isters. x86 processors have traditionally used the x87 in-
struction set, which is based on an 8-entry stack. SSE2
benefits a compiler mainly because it avoids the restrictions
of the x87 stack; the 8 additional registers also help in code
with many floating-point variables.

3. HiPE: A BRIEF OVERVIEW
Since October 2001, HiPE is included as an integrated

component in the open source Erlang/OTP system. A high-
level view of its current architecture is shown in Figure 1.
As far as the Erlang/OTP system is concerned, the HiPE
component consists of three main parts:

1. the HiPE compiler which translates BEAM virtual ma-
chine bytecode to native machine code in either a just-
in-time or an ahead-of-time fashion;

2. the HiPE loader which loads the generated native code
on-the-fly or from a fat .beam file into the code area;
and

3. a set of extensions to the Erlang/OTP runtime sys-
tem to efficiently support mixing interpreted and na-
tive code execution, at the granularity of individual
Erlang functions.

In order to make this paper relatively self-contained, this
section briefly describes these parts. A more detailed system
description of HiPE can be found in [9, 10].

3.1 The HiPE Compiler
Currently, compilation to native code starts by disassem-

bling the bytecode generated by the BEAM compiler, and
representing it in the form of a symbolic version of the
BEAM virtual machine bytecode. This version is then trans-
lated to Icode, which is an idealized Erlang assembly lan-
guage. The stack is implicit, any number of temporaries
may be used, and temporaries survive function calls. Most
computations are expressed as function calls. All bookkeep-
ing operations, including memory management and process
scheduling, are implicit. Icode is internally represented in
the form of a control flow graph (CFG). In this stage var-
ious optimizations are done. First, there are passes that

5
In HiPE/x86, this restriction is currently worked around by always

using the %eax register in byte memory accesses.

handle some of the inlining of binary operations [8] and add
code for handling exceptions. Then the CFG is turned into
SSA form [6], where HiPE performs sparse conditional con-
stant propagation [18], dead code removal, and copy propa-
gation [12]. Finally, a type propagator eliminates type tests
whose outcome is statically determined, or pushes these tests
forward in the CFG to the point that they are really needed.

Icode is then translated into RTL, which is a generic (i.e.,
target-independent) three-address register transfer language,
but the code is target-specific, mainly due to the use of
platform-specific registers when accessing a process’ state,
differences in address computations, and some differences in
the built-in primitives. At this level almost all operations
are made explicit. For example, data tagging and untagging
is translated to appropriate machine operations (shift, or,
etc), data accesses are turned into loads and stores. Also
arithmetic operations, data constructions and type tests are
inlined.

Finally, RTL code is translated to the target back-end. As
shown in Figure 1, currently available back-ends of the HiPE
compiler are SPARC V8+, x86, or AMD64. The AMD64
back-end is described in Section 5.

Additions and changes for AMD64 on RTL. Although
performed at the level of a register transfer language, the
handling of arithmetic is word-size specific. For this reason,
a new module of the HiPE compiler was developed which
performs 64-bit arithmetic. Although conceptually this is
trivial, its implementation turned out quite tricky given that
“fixnums” are larger on AMD64.6

Various other cleanups were required: Although in prin-
ciple target-independent, RTL was contaminated by various
implicit assumptions about word size, which were unnoticed
on 32-bit machines. The offending places of RTL code had
to be identified, factored out, and moved to a generic ser-
vice module, parameterized by the target. For instance, all
bitmasks in tagging operations had to be extended to be
64 bits long, and some data structures needed to have their
size in words changed (most notably 64-bit floating point
numbers). Similarly, field offset computations needed to be
parametrized by the word size. More cleanups of this kind
were required for the creation of jump tables used in the
pattern matching compilation of case expressions.

3.2 The HiPE Loader
The HiPE loader is responsible for loading native code

into the code area of the Erlang/OTP runtime system and
for patching call sites in code which is already loaded to call
this code. Special care needs to be taken in order to preserve
the semantics of code replacement in Erlang, especially in
cases where interpreted and native code is freely intermixed;
see [10, Section 4.2] on how this is done. For AMD64, the
x86 loader was cloned and the required changes were limited
to being able to write 64-bit rather than 32-bit constants to
memory.

3.3 Extensions to the Runtime System
HiPE extends the standard Erlang/OTP runtime system

to permit Erlang processes to execute both interpreted code
and native machine code. In this respect, HiPE is probably

6
Erlang/OTP fixnums are integer values that fit in one word and

thus, with a 4 bit type tag, are 28 bits long on a 32-bit machine and
60 bits long on a 64-bit machine.

Erlang Run-Time System HiPE Compiler

BEAM

Interpreter

&

RTS

Code area

BEAM

Dissassembler

HiPE

Loader

BEAM

Bytecode

Other

Data

Native

Code

Symbolic

BEAM

Icode

RTL

SPARC X86 AMD64

HiPE

Extensions

Figure 1: Architecture of a HiPE-enabled Erlang/OTP system.

unique: We know of no other functional programming lan-
guage implementations that support mixing interpreted and
native code in an arbitrary way.

Each Erlang process has two stacks, one for interpreted
code and one for native code. As explained in [10], this
simplifies garbage collection and exception handling, since
each stack contains only frames of a single type. Control
flow between interpreted and native code, e.g. at function
calls and returns, is handled by a mode-switch interface.
The implementation uses linker-generated proxy code stubs
and software trap return addresses to trigger the appropriate
mode-switches when invoked. Two important properties of
the mode-switch interface are that it preserves tail-recursion
(i.e., no sequence of consecutive mode-switching tail calls
grows either stack by more than a constant), and that it im-
poses no runtime overhead on same-mode calls and returns
(i.e., from native to native or from BEAM to BEAM).

Changes to the runtime system for AMD64 are described
in the next section.

4. THE AMD64 RUNTIME SYSTEM
The Erlang/OTP runtime system is written in C, and con-

sists of the BEAM virtual machine interpreter, the garbage
collector, the Erlang process scheduler, and a large number
of standard Erlang functions implemented in C (the BIFs).

Large parts of the runtime system are written in machine-
independent C code and did not need changes for AMD64;
these include the mode-switch interface, BIFs used by the
native-code loader, BIFs used for debugging and perfor-
mance measurements, and some primitive operations used
by compiled code.

Other parts of the runtime system are machine-specific:

• The low-level code for transitions between the mode-
switch interface and compiled Erlang machine code.
This is implemented in hand-written assembly code,
invoked via a small interface written in C.

• The glue code for calling C BIFs from compiled Erlang
machine code. This is assembly code, generated by
running an m4 script on the list of BIFs.

• The code to traverse the call stack for garbage col-

lection and for locating exception handlers. This is
implemented in C.

• Creating native code stubs for Erlang functions that
have not yet been compiled to native code. This is
implemented in C.

• Applying certain types of patches to native code dur-
ing code loading. This is implemented in C.

In the AMD64 port, the C code for traversing the call
stack, as well as the C code between the mode-switch inter-
face and the low-level assembly glue code, is shared with the
x86 port. This is possible because the only relevant differ-
ence between AMD64 and x86 in this code is the word size,
and carefully written C code can adapt to that automati-
cally.

The C code for creating stubs and for applying patches
was rewritten for AMD64. In both cases this is because
the code creates or patches AMD64 instructions containing
64-bit immediates.

The m4 script generating assembly wrapper code around
C BIFs was rewritten for AMD64. The main reason for this
is that the wrappers are highly dependent on C’s calling
convention, and C uses different calling conventions on x86
and AMD64: on x86 all parameters are passed on the stack,
while on AMD64 the first six are passed in registers.7

The low-level glue code between the mode-switch inter-
face and compiled Erlang machine code was rewritten for
AMD64. Since this code is both called from C and calls C,
it is dependent on C’s calling conventions. There are also
some syntactic differences between x86 and AMD64 related
to the use of 64-bit operands and additional registers.

A Unix signal handler is typically invoked asynchronously
on the current stack. This is problematic for HiPE/AMD64
since each Erlang process has its own stack. These stacks are
initially very small, and grown only in response to explicit
stack overflow checks emitted by the compiler. To avoid
stack overflow due to signals, we redirect all signal handlers
to the Unix process’ “alternate signal stack”, by overriding
the standard sigaction() and signal() procedures with
our own versions. Doing this is highly system-dependent,

7
For more information see www.x86-64.org/abi.pdf

which is why HiPE/AMD64 currently only supports Linux
with recent glibc libraries. These issues are shared with
HiPE/x86, see [14] for more information.

HiPE/AMD64 shares roughly one third of its runtime
system code with HiPE/x86. The remaining two thirds
were copied from HiPE/x86 and then modified as described
above.

4.1 64-bit cleanups in Erlang/OTP
The common Erlang/OTP runtime system was, prior to

our work on AMD64, believed to be 64-bit clean. How-
ever, we discovered some limitations which we were forced
to eliminate. In particular, although Erlang term “handles”
and pointers to data had been widened to 64 bits, the rep-
resentation of integers (both small fixed-size integers and
heap-allocated “big” integers) was unchanged from the 32-
bit runtime system. This caused a major problem:

Efficient native code arithmetic relies on using the proces-
sor’s overflow flag to detect when fixnums must be converted
to bignums. For this to work, fixnums must be as wide as
machine words (minus the type tag), but Erlang still used
28-bit (32 bits minus 4 tag bits) fixnums on 64-bit machines.
Failure to detect overflow in the 28-bit representation made
native code produce fixnums where bignums should have
been produced, causing problems when fixnums were passed
from native code to BEAM.

To eliminate this problem we modified the Erlang/OTP
runtime system to use word-sized fixnums also on 64-bit
machines. Due to undocumented dependencies between the
representations of fixnums and bignums, and assumptions in
the code for hashing Erlang terms and for converting terms
to and from the external binary format, this required a sig-
nificant amount of work. In addition to being able to sup-
port native code on AMD64, the result is a cleaner runtime
system with less overhead and higher performance on 64-bit
machines. These changes will be part of the next release of
Erlang/OTP.

5. THE AMD64 BACK-END
The phases of the AMD64 back-end are shown in Figure 2.

In the HiPE compiler, the AMD64 intermediate representa-
tion is a simple symbolic assembly language. It differs from
RTL in two major ways:

• Arithmetic operations are in two-address form, with
the destination operand also being a source operand.
(i.e. x += y instead of x = x + y)

• Memory operands are allowed, in the form of base reg-
ister + register or constant.

Since the intermediate representation is based on con-
trol flow graphs instead of linear code, calls and conditional
branch instructions are pseudo-instructions that list all their
possible destinations. These pseudo-instructions are con-
verted to proper AMD64 instructions just before the code is
passed to the assembler; see Section 5.5.

5.1 RTL to AMD64 Translation
The conversion from RTL to AMD64 is mainly concerned

with converting RTL’s three-address instructions to two-
address form. This procedure is the same as for the x86
and is described in [14].

Register Allocation

RTL
AMD64

Frame Management

Code Linearization

Pseudo-instruction Expansion

Peephole Optimization

Assembling

RTL to AMD64 Translation

Figure 2: The AMD64 back-end of Fig. 1 in detail.

One problem is that AMD64 instructions cannot have im-
mediate operands larger than 32 bits, with the exception of
the new mov reg imm64 instruction. Therefore, when a 64-
bit constant occurs in an RTL instruction, a new temporary
register is allocated and code is generated to copy the con-
stant into the register. This must be done also for symbolic
constants that denote runtime addresses, such as references
to jump tables. This problem does not exist on x86 since its
32-bit immediates perfectly match its 32-bit word size.

5.2 Register Allocation
After translation from RTL, register allocation is per-

formed to map the usually large number of temporaries
(pseudo-registers) on to the machine’s actual registers.

Register allocation is typically performed in a loop. First
an attempt is made to allocate registers for the code. If
this fails because some temporaries were spilled (could not
be assigned to registers), the code is rewritten under the
assumption that those temporaries are in memory, and the
process continues with a new allocation attempt. Eventu-
ally, however, the allocation will succeed.

In general, if an instruction reads the value of a spilled
temporary, the code is rewritten to read the value from mem-
ory into a new temporary just before that instruction. If a
value is written to a spilled temporary, the code is rewrit-
ten to write the value to a new temporary, followed by an
instruction to write the new temporary to memory.

However, AMD64, like x86, allows either the source or
the destination of an instruction to be a memory operand.
If both operands are spilled, then one of them is rewritten
using a new temporary. If only one operand is spilled, then
no rewrite occurs and no new temporary is allocated. The
frame management pass later converts these spilled tempo-
raries to memory operands in the stack frame.

The main change in register allocation for AMD64 con-
cerns the treatment of floating-point variables. Tradition-
ally, x86 has used the x87 floating-point unit, which has
an 8-entry stack instead of individually accessible registers.
This requires additional analysis and transformations for

good performance on floating-point intensive programs [11].
AMD64 supports both x87 and the register-oriented SSE2
floating-point unit, with SSE2 being preferred for new code.
In HiPE, register allocation for SSE2 uses the same iterated
coalescing allocator used for general-purpose registers, but
with parameters which are specific for SSE2. HiPE/AMD64
can also target the x87 via a compile-time option, using the
same code as in HiPE/x86, but this is mainly intended for
testing and benchmarking.

A few minor changes for AMD64 reflect the changes in
intermediate representation over x86. Byte-level memory
accesses can use any general-purpose register on AMD64,
but on x86 we forced them to use %eax. An instruction was
added for moving a 64-bit immediate into a register, requir-
ing changes in the code computing def–use information, the
code which rewrites instructions when a temporary has been
spilled, and the code which applies the final temporary-to-
register mapping. The instruction used for indexing and
jumping via jump tables was changed to reference the jump
table via a register instead of using a 32-bit address con-
stant; this required similar changes as described above.

There are currently three production-quality register al-
locators available in HiPE/AMD64: one based on linear
scan [15, 16], a Briggs-style graph-coloring allocator [4], and
an iterated coalescing graph-coloring allocator [7]. The cur-
rent default is iterated coalescing, but the user can choose
between them using a compiler option.

5.3 Frame Management
After register allocation the back-end introduces stack

frames and the call stack, maps spilled temporaries to slots
in the stack frame, rewrites uses of spilled temporaries as
memory operands in the stack frame, creates stack descrip-
tors at call sites, and generates code to allocate, deallo-
cate, and rewrite stack frames at function entry, exit, and
at tailcalls. Algorithmically this code is the same as for
HiPE/x86 [14, Section 5.3], but it needed many changes to
work on AMD64.

The frame module for x86 assumed a 4-byte word size and
contained many size/offset constants (4 or 8) based on this
assumption. On AMD64, many of these had to be made
twice as large. This was done manually since the rôle of
each constant had to be checked first.

Eventually both the AMD64 and x86 frame modules were
cleaned up to base their calculations on a word size param-
eter. They are now identical, except for their references to
other architecture-specific modules, and for the treatment
of floating-point values which occupy two words on x86 but
only one word on AMD64. The two implementations could
be merged, but we have not done so yet.

5.4 Code Linearization
At this point the symbolic AMD64 code is in its final

form, but still represented as a control flow graph. To allow
the linearized code to match the static branch prediction
rules, we bias conditional branches as unlikely to be taken
(if necessary by negating their conditions and exchanging
their successor labels). The conversion from CFG to linear
code generates the most likely path first, and then appends
the code for the less likely paths. Conditional branches in
the likely path thus tend to be unlikely to be taken and in
the forward direction, which is exactly what we want.

This part of the compiler is identical to that for x86.

5.5 Pseudo-instruction Expansion
As mentioned earlier, calls and conditional branch instruc-

tions are pseudo-instructions that list all their possible des-
tinations. After linearization, we rewrite each as a normal
AMD64 instruction with no or only one label, followed by
an unconditional jump to the fall-through label.

This part of the compiler is identical to that for x86.

5.6 Peephole Optimization
Before assembling the code, peephole optimization is done

to perform some final cleanups. It, for instance, removes
jumps to the next instruction, which occur as an artifact
of the code linearization and pseudo-instruction expansion
steps, and also instructions that move a register to itself,
which occur as an artifact of the register allocation step.

This part of the compiler is similar to that for x86.

5.7 Assembling
The assembly step converts the symbolic assembly code to

binary machine code, and produces a loadable object with
the machine code, constant data, a symbol table, and the
patches needed to relocate external references.

This is a complex task on AMD64, so it is divided into
three distinct passes.

5.7.1 Pass 1: Instruction Translation

The first pass translates instructions from the idealized
form used in the back-end to the actual form required by
the AMD64 architecture. This is non-trivial:

1. First the types of an instruction’s operands (register,
memory, small constant, large constant) are identified.

2. Then the set of valid encodings of the operation with
those particular operand types is determined.

3. Among the valid encodings, the cheapest (generally
the shortest) one should be identified and chosen. This
involves knowing about special cases that can use bet-
ter encodings than the general case. For example,
adding a constant to %eax can be done with the stan-
dard opcode byte and a byte for the register operand,
or with an alternate opcode byte. The size of a con-
stant also matters, since many contexts allow a small
constant to be encoded as a single byte, where the
general case requires four bytes.

4. While searching for the best encoding of an instruc-
tion or its operands, care must be taken to observe
any restrictions that may be present. For instance, a
memory operand using %rsp or %r12 as a base register
must use an additional SIB byte in its encoding.

Other instruction-selection optimizations, such as using test

instead of cmp when comparing a register against zero, or us-
ing xor instead of mov to clear a register, are also worthwhile.
In HiPE/AMD64, they are done in the peephole optimiza-
tion step.

The main change from x86 is the handling of the new
SSE2 instructions, most of which are easy to encode. A new
case of operands had to be added for the mov instruction,
for when an integer register is converted and copied into a
floating-point register.

The floating point negation instruction needed major magic.
The AMD64 back-end takes an implementation shortcut and

represents it as a virtual negation instruction up to this
point. The problem is that SSE2 does not have such an
instruction. Instead, an xorpd instruction must be used to
toggle the sign bit in the floating-point representation. Con-
structing the appropriate bit pattern into another floating-
point register at this point would be very awkward. Instead,
the bit pattern is stored in a variable in the runtime system,
and the xorpd gets a memory operand that refers to the ad-
dress of this variable. However, this memory operand only
has 32 bits available for the address. Loading the full 64-bit
address into a general-purpose register is out of the question
since this runs after the register allocator. Here we are saved
by the HiPE/AMD64 code model, which restricts runtime
system addresses to the low 32 bits of the address space.
In hindsight, it is clear that floating-point negation should
have been handled in the pseudo-instruction expansion step
instead.

5.7.2 Pass 2: Optimizing branch instructions

Branch instructions have two forms, a short one with an
8-bit offset, and a long one with a 32-bit offset. The shorter
one is always preferable, since it reduces code size and im-
proves performance. AMD64 and x86 are identical in this
respect.

However, the offset in a branch instruction depends on
the sizes of the instructions between the branch and its tar-
get, and the sizes of branch instructions in that range may
depend on the sizes of other instructions, including the very
branch instruction we first considered. This is a classical
“chicken-and-egg” problem in assemblers for CISC-style ma-
chines, but one that has not received much research atten-
tion since the 1970’s.

To solve this problem, the HiPE assembler now uses Szy-
manski’s algorithm [17], which is fast and produces optimal
code. The algorithm is implemented in a generic module,
used by several of HiPE’s back-ends.

5.7.3 Pass 3: Instruction encoding

In the last pass the AMD64 instructions are translated
from symbolic to binary form. This pass also derives the
actual locations of all relocation entries.

In principle, this is straightforward: check each instruc-
tion and its operands against the permissible patterns as
specified in the AMD64 architecture manuals, select the first
that matches, and produce the corresponding sequence of
bytes.

The main changes from x86 concern 64-bit operations, the
additional registers, and detecting when to emit the new
REX prefix.

On x86, encoding an instruction is a simple sequential
process: after identifiying the types of the operands, a list
is constructed by concatenating the opcode byte(s), the en-
coding of the operands, and the encoding of any additional
immediate operands.

On AMD64, the REX prefix must precede the opcode,
but the need to use a REX prefix, and the data to store
in it, is not known until later when the operands have been
encoded. To handle this we insert partial REX “markers” in
the list of bytes when we detect that a REX prefix is needed,
for instance if one of the new registers is used. Afterwards,
the markers are extracted and removed from the list. If any
markers were found, they are combined to a proper REX
prefix, which is added at the front of the list. This approach

is taken because the compiler is written in Erlang, so it can-
not use side-effects to incrementally update a shared “REX
needed?” flag.

Both before and after pass 2, it is necessary to know the
size of each instruction, in order to construct the mapping
from labels to their offsets in the code. For x86, this tra-
verses instructions and their operands just like when encod-
ing them, except it only accumulates the number of bytes
needed for the encoding. For AMD64, this does not quite
work because of the REX prefixes, so we currently encode
the instruction and return the length of that list instead.

Additional changes had to be made to support SSE2 in-
structions, and to remove the few x86 instructions no longer
valid in 64-bit mode, but these changes were straightfor-
ward.

In principle the AMD64 encoding module could also be
used for x86, if checks are inserted to ensure that no REX
prefixes are generated. We have not done so yet, to minimise
the risk of adding bugs to the x86 back-end, but it would
probably simplify code maintenance.

6. PERFORMANCE EVALUATION
In order to evaluate the performance of the AMD64 port

of HiPE, we compare the speedups obtained on this platform
with those obtained by the more mature HiPE/SPARC and
HiPE/x86 back-ends.

6.1 Performance on a mix of programs
Characteristics of the Erlang programs used as bench-

marks in this section are summarized in Figure 3. As can be
seen in Figure 4, the speedups of HiPE/AMD64 compared
with BEAM are significant (ranging from 35% up to almost
8 times faster). Moreover, more often than not, they are
on par or better than those achieved by HiPE/SPARC and
HiPE/x86. Compared with the x86, whose back-end is sim-
ilar to AMD64, the obtained speedups are overall slightly
better, most probably due to having double the number
of registers. (The only outliers are tak, qsort, decode and
yaws, for which we currently can offer no explanation.)

The benchmark where the speedup is the smallest is life.
The obtained speedup is small because this program spends
most of its execution time in the process scheduler, which
is part of the runtime system of Erlang/OTP (written in
C) that is shared across BEAM and HiPE. The bench-
mark where overall the speedup is biggest, prettypr, recurses
deeply and creates a stack of significant size. As such, it
benefits from generational stack collection [5] which is per-
formed by HiPE’s extension to the runtime system (aided
by stack descriptors that the HiPE compiler generates), but
not when executing BEAM bytecode.

6.2 Performance on programs manipulating
binaries

The binary syntax [13] has been an important addition to
the Erlang language and nowadays many telecommunication
protocols have been specified using it. An efficient compila-
tion scheme of Erlang’s bit syntax to native code has been
presented in [8].

Speedups on programs manipulating binaries are shown
in Figure 5. They show more or less the same picture as
Figure 4 with the exception of descrypt (a DES encryp-
tor/decryptor), which shows significantly higher speedups
running in native code. The reason is that this program

fib A recursive Fibonacci function. Uses integer arithmetic to calculate fib(30) 30 times.

tak Takeuchi function, uses recursion and integer arithmetic intensely. 1,000 repetitions of computing tak(18,12,6).

length A tail-recursive list length function finding the length of a 2,000 element list 50,000 times.

qsort Ordinary quicksort. Sorts a short list 100,000 times.

smith The Smith-Waterman DNA sequence matching algorithm. Matches a sequence against 100 others; all of length 32.
This is done 30 times.

huff A Huffman encoder which encodes and decodes a 32,026 character string 5 times.

decode Part of a telecommunications protocol. 500,000 repetitions of decoding an incoming message. A medium-sized
benchmark (≈ 400 lines).

life A concurrent benchmark executing 10,000 generations in Conway’s game of life on a 10 × 10 board where each square is
implemented as a process. This benchmark spends most of its time in the scheduler.

yaws An HTML parser from Yaws (Yet another Web server) parsing a small HTML page 100,000 times.

prettypr Formats a large source program for pretty-printing, repeated 4 times. Recurses very deeply. A medium-sized
benchmark (≈ 1, 100 lines).

estone Computes an Erlang system’s Estone ranking by running a number of common Erlang tasks and reporting a weighted
ranking of its performance on these tasks. This benchmark stresses all parts of an Erlang implementation, including its
runtime system and concurrency primitives.

Figure 3: Description of benchmark programs used in Figure 4.

��� ��� ��	
�� �
���
���� ���� ������ ���� ���
 �������� ���
��	�

�

�

�

�

�

�

�

�

!"#$%%%

&'#()

* �

#$+��

Figure 4: HiPE vs. BEAM speedups across different platforms.

manipulates mostly bytes and benefits from HiPE’s type an-
alyzer which in this case is able to infer that arithmetic oper-
ations on bytes will never overflow or result in a bignum. Be-
cause of severe limitations on the number of registers which
can be used for byte operations on x86, the obtained speedup
is significantly smaller on this platform compared with those
on the SPARC and on AMD64.

6.3 Performance on programs manipulating
floats

Floats are not extremely common in “typical” Erlang ap-
plications, but as the range of uses of the Erlang/OTP sys-
tem is expanding, they are crucial for some “non-standard”
Erlang uses; e.g. for Wings3D. Moreover, the representation
of floats differs significantly between a 32-bit and a 64-bit
machine. So, we were curious to see the performance of
HiPE/AMD64 on floating-point intensive programs.

Figure 6 shows the obtained results. As can be seen, the
speedups on all program are better on AMD64 than on x86,
due to less memory accesses and having double the number
of available FP registers. The float bm benchmark, which

requires more than 16 registers, achieves a better speedup
on SPARC.

7. AMD64 AS A TARGET MACHINE
Some of the benefits the AMD64 brings over the x86, in

general and to Erlang users in particular, include:

• More registers (twice as many as x86) which improves
runtime performance by increasing the chance that a
compiler will be able to keep an important value in a
register as opposed to accessing it in memory.

• Uniform support for byte-level accesses for all integer
registers. This improves performance for bit-syntax
operations since it eliminates the awkward limitations
in the x86.

• Much larger range for fixnums. Since a majority of
bit-syntax integer matching operations are for integers
less than 60 bits wide, the compiler can generate faster
code for these since it knows the results will be repre-
sentable as fixnums.

��������	� ���
�	�
� �����	�
� ����
�	�
� ������	�
�
�	�
�
��
��	����

�

�

�

�

�

�

�

�

�

��

��

�

��

�������

��� !

���

��"��

Figure 5: HiPE vs. BEAM speedups on programs manipulating binaries.

������ ����	
��
�
�
�����

�

�

�

�

�

�

�������

�����

 !"

��#"�

Figure 6: HiPE vs. BEAM speedups on programs
manipulating floats.

• Faster operations on big integers. Bignums are repre-
sented as sequences of small integers, each half the size
of the machine’s word size, and arithmetic operations
are performed on one such integer at a time. A larger
word size means that fewer operations are needed when
performing arithmetic on a given bignum.

• Larger address space, both virtual and physical, al-
lowing Erlang to work on e.g. large memory-resident
databases.

There is one generic drawback of 64-bit machines over
32-bit machines, viz. that pointer-based data structures
such as lists and tuples become twice as large, placing addi-
tional burdens on the memory and cache subsystems. It is
possible that a “small data” model which restricts pointers
and fixnums to 32-bit values may offer the best performance
for some applications. We intend to investigate the expected
performance benefits of this model.

8. CONCLUDING REMARKS
This paper has described the HiPE/AMD64 compiler: its

architecture, design decisions, technical issues that had to
be addressed and their implementation. As shown by its
performance evaluation, HiPE/AMD64 results in noticeable

speedups compared with interpreted code across a range of
Erlang programs. Quite often, the obtained speedups are
better than those achieved by HiPE/SPARC and HiPE/x86.

HiPE/AMD64, which will be included in the upcoming
R10 release of Erlang/OTP system, is the first 64-bit native
code compiler for Erlang. However, since 64-bit machines
are here to stay, HiPE/AMD64 is most probably not the
last compiler of this kind.

9. ACKNOWLEDGMENTS
The development of HiPE/AMD64 has been supported

in part by VINNOVA through the ASTEC (Advanced Soft-
ware Technology) competence center as part of a project in
cooperation with Ericsson and T-Mobile.

10. REFERENCES

[1] AMD Corporation. AMD64 Architecture
Programmer’s Manual, Sept. 2003. Publication #
24592, 24593, 24594, 26568, 26569.

[2] AMD Corporation. Software Optimization Guide for
AMD AthlonTM 64 and AMD OpteronTM 64
Processors, Sept. 2003. Publication # 25112, Revision
3.03.

[3] J. Armstrong, R. Virding, C. Wikström, and
M. Williams. Concurrent Programming in Erlang.
Prentice Hall Europe, Herfordshire, Great Britain,
second edition, 1996.

[4] P. Briggs, K. D. Cooper, and L. Torczon.
Improvements to graph coloring register allocation.
ACM Trans. Prog. Lang. Syst., 16(3):428–455, May
1994.

[5] P. Cheng, R. Harper, and P. Lee. Generational stack
collection and profile-driven pretenuring. In
Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation,
PLDI’98, pages 162–173, New York, N.Y., 1998. ACM
Press.

[6] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman,
and F. K. Zadeck. Efficiently computing static single
assignment form and the control dependence graph.
ACM Trans. Prog. Lang. Syst., 13(4):451–490, Oct.
1991.

[7] L. George and A. W. Appel. Iterated register
coalescing. ACM Trans. Prog. Lang. Syst.,
18(3):300–324, May 1996.

[8] P. Gustafsson and K. Sagonas. Native code
compilation of Erlang’s bit syntax. In Proceedings of
ACM SIGPLAN Erlang Workshop, pages 6–15. ACM
Press, Nov. 2002.

[9] E. Johansson, M. Pettersson, and K. Sagonas. HiPE:
A High Performance Erlang system. In Proceedings of
the ACM SIGPLAN Conference on Principles and
Practice of Declarative Programming, pages 32–43,
New York, NY, Sept. 2000. ACM Press.

[10] E. Johansson, M. Pettersson, K. Sagonas, and
T. Lindgren. The development of the HiPE system:
Design and experience report. Springer International
Journal of Software Tools for Technology Transfer,
4(4):421–436, Aug. 2003.

[11] T. Lindahl and K. Sagonas. Unboxed compilation of
floating point arithmetic in a dynamically typed
language environment. In R. Peña and T. Arts,
editors, Implementation of Functional Languages:
Proceedings of the 14th International Workshop,
number 2670 in LNCS, pages 134–149. Springer, Sept.
2002.

[12] S. S. Muchnick. Advanced Compiler Design &
Implementation. Morgan Kaufman Publishers, San
Fransisco, CA, 1997.

[13] P. Nyblom. The bit syntax - the released version. In
Proceedings of the Sixth International Erlang/OTP
User Conference, Oct. 2000. Available at
http://www.erlang.se/euc/00/.

[14] M. Pettersson, K. Sagonas, and E. Johansson. The
HiPE/x86 Erlang compiler: System description and
performance evaluation. In Z. Hu and
M. Rodŕıguez-Artalejo, editors, Proceedings of the
Sixth International Symposium on Functional and
Logic Programming, number 2441 in LNCS, pages
228–244, Berlin, Germany, Sept. 2002. Springer.

[15] M. Poletto and V. Sarkar. Linear scan register
allocation. ACM Trans. Prog. Lang. Syst.,
21(5):895–913, Sept. 1999.

[16] K. Sagonas and E. Stenman. Experimental evaluation
and improvements to linear scan register allocation.
Software – Practice and Experience, 33(11):1003–1034,
Sept. 2003.

[17] T. G. Szymanski. Assembling code for machines with
span-dependent instructions. Communications of the
ACM, 21(4):300–308, Apr. 1978.

[18] M. N. Wegman and F. K. Zadeck. Constant
propagation with conditional branches. ACM Trans.
Prog. Lang. Syst., 13(2):181–210, Apr. 1991.

Super Size your Backend:

Advice on how to Develop an Efficient AMD64 Backend

Daniel Luna, Mikael Pettersson, and Konstantinos Sagonas

Department of Information Technology, Uppsala University, Sweden

e-mail: luna@update.uu.se {mikpe,kostis}@it.uu.se

Abstract. For about a year now, we have been developing and tuning an AMD64 back-

end for the HiPE Erlang compiler. In this paper, we try to step back and critically exam-

ine design choices for obtaining an efficient AMD64 backend. We describe how other

developers can migrate existing x86 backends to the AMD64 architecture, and offer

advice based on our experiences. In particular, we mention backend components that

can be shared between x86 and AMD64, and those that better be different for achieving

high performance on AMD64. Finally, we measure the performance of several different

alternatives in the hope that this can save development effort for others who intend to

engage in a similar feat.

1 Introduction

It is hardly surprising that developing an efficient new backend for an existing compiler,

especially in compilers for high-level languages, usually turns out to be a bigger task than one

initially anticipates. To do it properly, one should ideally consider many alternatives for each

design choice and experimentally evaluate their performance tradeoffs. As this is much more

easily wished than done, few compiler teams actually invest this effort and follow this ideal

approach to backend development. We hold that the effort spent in developing a backend

for a new architecture can be reduced significantly if experiences get documented on paper

and shared among compiler writers. This way, developers can readily choose parameters that

worked well in settings which are similar to theirs, and only vary design choices that rely on

assumptions which are not valid in their compiler framework.

In the context of the HiPE compiler,1 an industrial-strength native code compiler for the

concurrent functional language Erlang, we have spent the period November 2003 – Septem-

ber 2004 developing and tuning a backend for AMD64. (Actually, this has been the first

64-bit backend of HiPE. The AMD64 platform was chosen due to its similarities with the

widely popular x86 architecture, its upcoming importance,2 and the affordability of these

machines.) We have experimented with various implementation alternatives and, since the

implementation issues at the level of generating native code are generic, we believe that our

experiences and measurements are of interest to all compiler writers that consider developing

an efficient AMD64 backend.

The contributions of this paper are:

– On the ‘theoretical’ side, the paper offers advice on how to develop an efficient compiler

backend for AMD64. In particular, we describe how to migrate an existing backend for

1 The High Performance Erlang compiler; see www.it.uu.se/research/group/hipe/.
2 In addition to many major PC manufacturers that already provide AMD64-based desktops and lap-

tops, Sun has announced its new line of AMD Opteron 64 based servers and workstations; see

www.sun.com/amd/.

x86 to AMD64 with moderate effort, but without missing opportunities to take advantage

of architectural features present on AMD64 but not on x86.

– On the experimental side, the paper includes an extensive set of measurements (obtained

using hardware performance counters) that evaluate the performance of various imple-

mentation alternatives and support our advice.

As a by-product, this paper also documents the internals of HiPE/AMD64 and compares our

choices with those of the few other compilers with existing AMD64 backends.

The rest of the paper is structured as follows. The next section describes the infrastructure

of the HiPE compiler, while Sect. 3 overviews the characteristics of the AMD64 architecture

from a compiler writer’s perspective. Sections 4 and 5 form the main body of this paper

describing in detail issues that are generic to obtaining good performance on AMD64 and

issues that are particular to the implementation of functional languages, respectively. The

performance of all these implementation alternatives is evaluated in Sect. 6. The paper ends

with reviewing the internals of other currently existing compilers with backends for AMD64

(Sect. 7) and with some concluding remarks (Sect. 8).

2 The HiPE Compiler Infrastructure

In this section, we briefly describe the Erlang/OTP system and the HiPE native code compiler

which is the basis of our work; refer to [9, 13] for more detailed information.

Erlang is a concurrent functional language designed for developing large-scale, dis-

tributed, fault-tolerant, soft real-time control systems such as those typically developed by

the telecom industry. The primary implementation of the language is the Erlang/OTP system

from Ericsson, which is nowadays used by many big companies to develop large (million

lines of code) commercial applications. Even though Erlang/OTP is by default based on a

virtual machine interpreter, since 2001, it also includes the HiPE native code compiler as a

fully integrated component.3

The HiPE compiler currently has backends for SPARC V8+, x86, AMD64, and Pow-

erPC. It can be used as either a just-in-time or ahead-of-time compiler, and compilation can

start either from bytecode or from source. (However, in this paper, all measurements were

obtained in the mode where compilation happens ahead-of-time and starts from bytecode.)

The target-independent part of the compilation takes place in two intermediate code repre-

sentations: Icode and RTL.

Icode is internally represented as a control flow graph (CFG) which has been turned into

static single assignment (SSA) form [4]. In this stage various optimizations are performed:

sparse conditional constant propagation (SCCP) [18], unreachable and dead-code elimination

(DCE), and copy propagation (CP). Finally, a type propagator guided by dataflow analysis

eliminates type tests whose outcome is statically determined, or pushes these tests forward

in the CFG to the point that they are really needed.

Icode is then translated into RTL, which is a generic (i.e., target-independent) three-

address register transfer language, but the code is target-specific, mainly due to the use of

platform-specific registers when accessing a process’ state, differences in address compu-

tations, and some differences in the built-in primitives. In RTL, almost all operations are

made explicit. For example, data tagging and untagging is translated to appropriate machine

3 Erlang/OTP exists both in commercial and open-source distributions and their differences are mostly

in support; see www.erlang.se and www.erlang.org, respectively. Since October 2004, the

HiPE/AMD64 compiler is part of Erlang/OTP R10B and can be obtained from there.

2

operations (shift, or, etc), data accesses are turned into loads and stores. Also arithmetic

operations, data constructions and type tests are inlined. RTL is also internally represented

as a CFG in SSA form and similar optimizations as in Icode (SCCP, DCE, and CP) as well

as partial redundancy elimination (PRE) are performed.

Finally, RTL code is translated to (a symbolic representation of) the language of the target

backend. At this level the most important compilation phases that take place are register

allocation, branch-prediction-aware trace linearization, some peephole optimizations, and

finally assembling.

As far as this paper is concerned, it is important to notice that at the levels of RTL and

machine language, issues are independent from the choice and characteristics of language

from which HiPE starts its compilation. The only major ‘typical’ compiler optimizations

that the HiPE compiler currently does not perform are loop optimizations and instruction

scheduling. The former is not so effective in a functional language where functions are not

nested. The latter is of limited importance for an architecture which performs out-of-order

execution of instructions, such as AMD64.

3 An Overview of AMD64

AMD64 is a family of general-purpose processors currently available for server, workstation,

desktop, and notebook computers [1].

Architecturally, these processors are 64-bit machines, with 64-bit registers (16 integer

and 16 floating-point) and 64-bit virtual address spaces. An important characteristic is that

they are fully compatible with 32-bit x86 code. AMD64 processors can run 32-bit operating

systems and applications (referred to as legacy mode), 64-bit operating systems and applica-

tions, or 64-bit operating systems with 32-bit applications (called compatibility mode).

A distinguishing implementation feature of the current AMD64 processors is their in-

tegrated memory controllers, which increase bandwidth and reduce latencies for memory

accesses. Another implementation feature is that the server processors support multiprocess-

ing (up to 8-way) without the need for external support components, which reduces the cost

and complexity of such systems.

Although the design originated from AMD, Intel has since started making software-

compatible 64-bit processors, initially for servers.4

3.1 Technical Summary

Here we summarize the technical aspects of AMD64 that are relevant for compiler writers.

Many of these are shared with x86; differences from x86 are described later.

– Instructions are in 2-address form, i.e. dst op= src. Although operating on registers is

generally faster, most instructions allow either dst or src, but not both, to be memory

operands. A memory operand is the sum of a base register, a scaled index register, and a

constant offset, where most parts are optional.

– The AMD64 has 16 general-purpose registers and 16 floating-point registers, all 64-bit

wide. Instructions on 32-bit integers automatically zero-extend their results to 64 bits

(32-bit operands are default on AMD64), while instructions on 16 or 8-bit integers leave

the higher bits unchanged.

4 Intel calls this Intel R© EM64T (Extended Memory 64 Technology) though; see also www.intel.

com/technology/64bitextensions/.

3

– The implementations use pipelining, and out-of-order and speculative execution of in-

structions; this means that branch prediction misses are expensive.

– The dynamic branch prediction hardware has a buffer that remembers whether a given

branch is likely to be taken or not. When a branch is not listed in the buffer, the static

predictor assumes that backward branches are taken, and forward branches are not taken.

This means that an efficient compiler should pay attention to how it constructs traces and

linearizes its code.

– There is direct support for a call stack, pointed to by the %rsp general purpose register,

via the call, ret, push and pop instructions.

– The return stack branch predictor has a small circular buffer for return addresses. A

call instruction pushes its return address both on the stack and on this buffer. At a ret

instruction, the top-most element is popped off the buffer and used as the predicted target

of the instruction.

– Instructions vary in size, from one to fifteen bytes. The actual instruction opcodes are

usually one or two bytes long, with prefixes and suffixes making up the rest. Prefixes

alter the behaviour of an instruction, while suffixes encode its operands.

3.2 Differences from x86

The main differences from x86, apart from widening registers and virtual addresses from 32

to 64 bits and doubling the number of registers, concern instruction encoding, elimination of

some x86 restrictions on byte operations, and the new floating-point model.

The x86 instruction encoding is limited to 3 bits for register numbers, and 32 bits for

immediate operands such as code or data addresses. AMD64 follows the x86 encoding, with

one main difference: the REX prefix. The REX prefix, when present, immediately precedes

the instruction’s first opcode byte. It has four one-bit fields, W, R, X, and B, that augment the

instruction’s x86 encoding. Even though AMD64 is a 64-bit architecture, most instructions

take 32-bit operands as default. The W bit in the REX prefix changes instructions to use 64-

bit operands. The R, X, and B bits provide a fourth (high) bit in register number encodings,

allowing access to the 8 new registers not available in the x86. The REX prefix uses the op-

codes that x86 uses for single-byte inc and dec instructions; on AMD64, these instructions

must use a two-byte encoding.

Immediate operands on AMD64, such as address or data constants, are limited to 32

bits just as on x86. This means that branches, calls, and memory accesses cannot directly

access arbitrary locations in the 64-bit address space. To simplify the construction of 64-bit

constants, AMD64 has a new instruction which takes a 64-bit immediate operand and copies

it into a specific register.

The 32-bit immediate operands on AMD64 are zero-extended when used in 32-bit oper-

ations (the default), but sign-extended when used in 64-bit operations. This makes it difficult

to use constants and addresses in the [231, 232
− 1] range in 64-bit operations.

x86 has several ways of encoding a memory operand that denotes an absolute 32-bit

address. AMD64 redefines one of those encodings to instead denote a PC-relative address.

This is particularly helpful for reducing the number of load-time relocations in programs

with many accesses to global data.

On AMD64 any general purpose register can be used in a load or store operation access-

ing its low 8 bits. On x86 only registers 0–3 can be used in this way, since register numbers

4–7 actually denote bits 8 to 15 in these registers in byte memory access instructions.

Every AMD64 processor implements the SSE2 floating-point instruction set, which is

register-oriented with 16 registers. x86 processors have traditionally used the x87 instruction

4

set, which is based on an 8-entry stack. Although newer x86 processors also implement

SSE2, they are limited to 8 registers; furthermore, unless told otherwise, a compiler for x86

cannot assume that SSE2 is available.

4 Language-Independent Efficiency Considerations

For generation of efficient code on AMD64, there are a few general but important rules to

obey [2]:

1. Enable good branch prediction. Arrange code to follow the static branch predictor’s

rules. Ensure that each ret instruction is preceded by a corresponding call instruc-

tion: do not bypass the call stack or manipulate the return addresses within it.

2. Many instructions have different possible binary encodings. In general, the shortest en-

coding maximizes performance. Avoid unnecessary REX prefixes.

3. Keep variables permanently in registers when possible. If this is not possible, it is gener-

ally better to use memory operands in instructions than to read variables into temporary

registers before each use.

4. Ensure that memory accesses are to addresses that are a multiple of the size of the access:

a 32-bit read or write should be to an address that is a multiple of 4 bytes. Reads and

writes to a given memory area should match in address and access size.

4.1 Immediate Operands

Immediate values (constants) in general operands are limited to 32 bits on AMD64, as on

x86. On AMD64, an immediate is sign-extended to 64 bits when used in a 64-bit operation,

while 32-bit operations compute 32-bit results which are then zero-extended to 64 bits before

being stored in a target register.

An obvious consequence of this is that instructions containing large immediates may

have to be rewritten on AMD64. If a constant in the [231, 232
− 1] range is to be simply

loaded into a register or stored in a 32-bit memory word, then there is no problem because a

32-bit operation will have the desired effect: if the target is a register then the result is zero-

extended to 64 bits, and if the target is a memory operand, the result is truncated to 32 bits.

On the other hand, if such a constant is to be used as an operand in a 64-bit operation, like an

addition or a 64-bit memory write, then the code must be modified to compute the constant

into a register first, and to use that register instead of the constant in the original instruction.

Another consequence is that code or data at arbitrary 64-bit addresses cannot be accessed

using only immediate operands: in general, 64-bit addresses must be loaded into registers

which are then used to access the code or data indirectly.5 A code model is a set of constraints

on the size and placement of code and data, the idea being that runtime overheads can be

reduced by sacrificing some generality. The C ABI document for AMD64 [8] defines the

following three basic code models for application code:6

Small code model All compile-time and link-time addresses and symbols are assumed to fit

in 32-bit immediate operands. This model avoids all overheads for large addresses, but

restricts code and global data to the low 2GB of the address space, due to sign-extension

of immediate operands.

5 This is a generic issue on machines which only have immediate operands smaller than their virtual

address space. The issue also affects 32-bit SPARC and PowerPC, but not x86.
6 The ABI also defines code models for position-independent code and the Linux kernel.

5

Medium code model Like the small code model, except that addresses of global data are

unrestricted. To construct a large address, the compiler must use a new form of the move

instruction which loads a 64-bit immediate constant into a register. Calls and jumps to

code can still use ordinary 32-bit immediate offsets.

Large code model No restrictions are placed on the size or placement of either code or

global data. Global data accesses are as in the medium code model. Long-distance calls

and jumps must use indirection: this can be done statically, by rewriting all call and

jumps that may be long-distance, or dynamically, by having the linker or loader redirect

long-distance calls and jumps to automatically generated trampolines that then jump

indirectly to the final targets.7

HiPE/AMD64 uses a hybrid small/medium code model. Addresses of code and runtime sys-

tem symbols are assumed to fit in sign-extended 32 bit immediates. The addresses of data

objects defined in compiled code, i.e., compile-time literals and jump tables, are not assumed

to fit in 32 bits; for them the move reg,imm64 instruction is used, which the code loader

updates with the datum’s actual runtime address.

GCC on AMD64 implements the small and medium code models, with the small one

being the default [7]. It also implements a variant of the small code model where all constant

addresses are in the last 231 bytes of the 64-bit address space; this code model is used for the

Linux kernel.

4.2 Floating-Point Arithmetic

Floating-point arithmetic on x86 is traditionally done with the old x87 instruction set, which

uses an 8-entry stack. A newer register-oriented instruction set, SSE2, was added in the

Pentium 4 processor, but a compiler for x86 cannot utilize it unless it can be sure that the

generated code will only run on SSE2-capable processors. AMD64 changes the situation in

two ways: SSE2 is guaranteed to be present, and the number of floating-point registers has

been doubled to 16.

On AMD64, SSE2 is generally preferred over x87, because of the larger number of reg-

isters, and because it avoids the complicated analyses and code generation algorithms needed

to work around the limitations of the x87 stack [11]. Although AMD64 processors still sup-

port x87, there are indications that some operating systems, including Windows, will drop

x87 support when they migrate from 32 to 64 bits.

4.3 Register Allocation

Generating efficient code for x86 can be difficult, mainly because the small number of

general-purpose registers (7, not counting the stack pointer) results in a larger number of

spills than on typical RISC machines. Generating efficient code requires using both com-

putationally intensive register allocation methods, such as graph coloring, and x86-specific

solutions such as using explicit memory operands instead of reloading spilled temporaries

into registers (which might cause other temporaries to spill).

AMD64 considerably improves the situation. The availability of 15 general-purpose reg-

isters (excluding the stack pointer) reduces register pressure and the number of spills. This

may allow less computationally intensive strategies for register allocation, such as linear

scan [14, 15], to become feasible on AMD64; this is especially important when compile

times are an issue, such as in JITs and in interactive systems.

7 HiPE uses trampolines on PowerPC to compensate for its small unconditional branch offsets.

6

8-bit operations can be awkward on x86 because it only allows the first four general-

purpose registers to be used for 8-bit operands. AMD64 allows any general-purpose reg-

ister to be used for 8-bit operations. Working around the limitations on x86 constrains ei-

ther instruction selection or register allocation, which can result in performance losses8. On

AMD64 these constraints are not necessary, allowing the compiler to generate potentially

higher-performance code.

4.4 Parameter Passing

Passing function parameters in registers is an important optimization in many programming

language implementations. First, it tends to reduce the number of memory accesses needed

to set up the parameters in the caller. Second, it allows the callee to decide whether the pa-

rameters need to be saved on the stack or not. For leaf functions, the parameters can typically

remain in registers throughout the function’s body. For non-leaf functions, the compiler is

free to decide if and where the parameters should be saved on the stack.

Since AMD64 has twice as many general-purpose registers as x86 has, a compiler will in

general be able to pass more parameters in registers on AMD64 than on x86, which should

improve performance.

An important issue to consider is whether the calling convention needs to be compatible

with the standard C calling convention or not. In the former case, the compiler has little

choice but to follow the standard rules, which for Unix and Linux are: on x86 all parameters

are passed on the stack, on AMD64 the first six are passed in registers with the remainder on

the stack just as for x86. If this is the case, then the compiler must be generalized to support

register parameters when migrating from x86 to AMD64. In the latter case, the compiler is

probably already passing some parameters in registers in x86, so migrating to AMD64 just

involves changing the number of parameter registers used, and their names.

4.5 Branch Prediction

Enabling good branch prediction is essential for performance for typical integer code, due

to such code having a higher degree of tests and conditional branches than typical numer-

ical code. The processor’s dynamic branch prediction table takes care of this for the most

frequently executed (hot) code, but it cannot do so for infrequently executed (cold) code, or

when the amount of hot code is too large for the table.

If the compiler has reason to assume that a given conditional branch is more likely to

branch in a particular direction, then it should linearize the code so that this prediction co-

incides with the processor’s static branch predictor. Modern AMD64 and x86 processors

predict forward conditional branches as not taken, and backward conditional branches as

taken, so a way to achieve this is to:

1. bias conditional branches to be unlikely to be taken, if necessary by inverting their con-

ditions, and

2. linearize the control flow graph by constructing traces that include the most likely path

first.

Assumptions about branch directions may come from a variety of sources, including pro-

grammer annotations9 and feedback from running the code in profiling mode. Dynamically

8 In HiPE/x86, these limitations are currently worked around by always using the %eax register in byte

memory accesses.
9 Such as the builtin expect annotation in gcc.

7

typed languages typically perform frequent type tests that check for error conditions before

primitive operations; these tests can be assumed to be highly biased in the non-error direc-

tion.

In a large code model, (potentially) long-distance calls and jumps must use indirection

via computed addresses. The targets of such instructions will not be predictable unless the

instructions occur in hot code paths. Using normal (static) calls or jumps to trampolines may

improve branch predictability by reducing the number of distinct indirect jumps that need to

be resolved and recorded in the dynamic branch prediction table.

Since call and ret instructions push and pop (respectively) return addresses on the

return stack branch prediction buffer, it is important to use them in pairs. Not doing so, by

for instance manually pushing a return address on the stack but returning to it with ret,

will cause the buffer to become unsynchronized with the actual stack, which in turn causes

branch prediction misses in the ret instructions. This issue highly relevant for languages

that implement proper tail-recursion optimization; see Sect. 5.1.

4.6 Instruction Operand Encoding

x86 encodes instruction operands using so-called ModRM and SIB bytes, which contain

modifiers and register numbers. Some combinations of modifiers and register numbers change

the interpretation of an operand, leading to a number of special cases which must be handled.

The AMD64 REX prefix provides an additional bit for each of the three register number fields

in the ModRM and SIB bytes, which affects the rules for the special cases. The updated rules

for the existing special cases are:

– A memory operand with a base register can be described with just a ModRM byte, except

when the register is %esp, in which case an additional SIB byte is required.

AMD64 does not decode the REX B bit to determine this case. Therefore, a SIB byte is

also required when register 12 (%esp+ 8) is used as a base register.

– A memory operand with a base register but no offset (implicitly zero) can be decribed

with just a ModRM byte, except when the register is %ebp, in which case an explicit

offset constant must be included.

AMD64 does not decode the REX B bit to determine this case. Therefore, an explicit

offset is also required when register 13 (%ebp+ 8) is used as a base register.

– %esp cannot be used as an index register in a memory operand, since that SIB encoding

instead indicates the absence of an index.

AMD64 does decode the REX X bit to determine this case. Therefore, there is no prob-

lem using register 12 (%esp+ 8) as an index register.

– A memory operand with a base register and an optional index but no offset can be de-

scribed with a ModRM and a SIB byte, except when the register is %ebp, in which case

an explicit offset must be included.

AMD64 does not decode the REX B bit to determine this case. Therefore, an explicit

offset is also required when register 13 (%ebp + 8) is used as a base register with an

optional index.

AMD64 also adds a new special case. A memory operand specified simply by a 32-

bit constant can be encoded in several different ways. AMD64 has redefined the shortest

encoding so that the constant is added to the program counter instead of being an absolute

address. This is a highly desirable feature since it can be used to reduce the number of load-

time relocations, but it forces operands with absolute addresses to use a longer encoding on

AMD64 than on x86.

8

4.7 REX Prefixes: Detecting them, Avoiding them

The REX prefix on AMD64 has two uses: it provides additional bits to register numbers in

instruction operands, and it provides a flag which switches an instruction from the default 32

bit operand size to a 64 bit operand size.

Detecting the need for a REX prefix is easily done while the assembler is encoding an

instruction: any use of a high register number (8–15) or a 64-bit operation triggers it.

On the other hand, REX prefixes increase code size, reducing instruction decode band-

with and the capacity of the instruction cache, so the recommendation [2] is to avoid un-

necessary REX prefixes. This can be done by avoiding 64-bit operations when 32-bit ones

suffice, and by preferring low register numbers (0–7) over high ones in 32-bit operations.

The applicability of these strategies are application and language specific. For instance, most

C code uses plain int for integers, which are 32 bits on AMD64, while code using pointers

or pointer-sized integers (which is typical in high-level symbolic languages) must use 64-bit

operations.

5 Considerations for Functional Languages

5.1 Tail Recursion and Branch Prediction

Functional programming languages typically require proper tail-recursion optimization in

their implementations; this is because they omit imperative-style looping statements, leaving

tail-recursive function calls as the only way to construct loops. Logic programming lan-

guages are similar in this respect.

Consider a call chain where f recursively calls g which tailcalls h. f sets up a parameter

area including a return address back to f and then branches to g. g then rewrites this area

and branches to h. In h, the area must look exactly as if f had called h directly. The format

and size of the parameter area depends on the number of parameters; a tailcall where the

caller and callee have different number of parameters must therefore change the format of

the area. Now consider the return address parameter. It will not change at a tailcall, but

depending on the formatting rules for the parameter area, it may still have to be moved to a

different location. This relocation is pure overhead, so many implementations have focused

on avoiding it.

One way to avoid relocating the return address is to always pass it in a specific register;

to return, a jump via that register is executed [17]. Another approach is to push the return

address on the stack before pushing the remaining actual parameters [16, 5]. This ensures

that even if caller and callee at a tailcall have different number of parameters, the location

of the return address will remain the same. To return, a native return instruction which pops

the address off the stack may be used, or the address can be popped explicitly and jumped

to via a register. Both approaches have been used to implement tailcalls on stack-oriented

machines like x86 and older CISCs10. The problem with these approaches is that they cause

branch prediction misses at returns, because the return stack branch predictor either is not

used at all or is out of sync.

The approach taken in HiPE, on both x86 and AMD64, is to use the native call stack in

the natural way. At a recursive call, the parameters are placed in registers or at the bottom of

the stack, and the callee is invoked with a call instruction. At a return, a ret $n instruction

is executed which pops the return address and n bytes of parameters and then returns. The

10 Passing the return address in a register is the normal case for RISCs.

9

main advantage of this approach is that it enables the return stack branch predictor, which

reduces the number of branch mispredictions. It also reduces the number of instructions

needed at calls and returns. The only disadvantage is that the return address will have to be

relocated at tailcalls if the caller and callee have different number of parameters on the stack.

However, with sufficiently many parameters passed in registers, the need for relocating the

return address becomes less likely. Since AMD64 has more registers available for parameter

passing than x86, a calling convention that avoids return address relocation in most cases is

quite feasible.

5.2 Caching Global State in Registers

Compiled code from functional languages often reference a number of global variables, typ-

ically including at least a stack pointer and a heap pointer (for dynamic memory allocation),

and usually also stack and heap limit pointers (for memory overflow checking). Erlang, being

a concurrent language, adds to these a simulated clock and a pointer to the current process’

permanent state record. Having these global variables permanently in registers should in gen-

eral improve performance. Thanks to its larger number of registers, up to about 4–6 global

variables in registers should be possible on AMD64.

Increasing the number of global variables in registers also increases the cost when these

registers must be saved to or restored from memory cells. One such case is when the code

needs to call procedures written in other languages, such as C library procedures. Another

case is context switching for process scheduling in concurrent languages that implement their

own processes. In Erlang/OTP, both cases are very frequent.

5.3 Native Stack Pointer or Not?

The stack pointer needs additional consideration.As described previously, using the hardware-

supported stack in the natural way has advantages for branch prediction and instruction

counts; it also avoids reserving a general-purpose register for a rôle directly supported by

the hardware stack pointer. Unfortunately, using the hardware stack also has some disadvan-

tages:

– On both AMD64 and x86, a memory operand consisting of a base register and an offset

requires a one byte longer encoding when the base register is the hardware stack pointer.

This slightly increases the code size for stack accesses.

As long as reasonable quality register allocation is performed for local variables, it is

doubtful that this code size increase is a serious issue.11 If it does turn out to be an issue,

then another register can be reserved, and used either as a frame pointer in addition to

the stack pointer, or as a replacement for the stack pointer. Of course, both choices entail

performance losses in other areas.

– Some operating systems can force a process to asynchronously execute a call to some

code on the current hardware stack. This issue arises from signal handlers in Unix and

Linux, but it also affects Windows and possibly other operating systems. If the stack

is dynamically sized and explicitly managed by the compiled code from the functional

language, then the stack may overflow as the result of such an asynchronous call.

11 MLton was designed to avoid the issue on x86, by using %ebp as a pointer to a simulated stack, and

reassigning %esp to be the heap pointer. There is no benchmark data available measuring the impact

of this design choice.

10

On Unix and Linux, it is possible to force signal handlers to execute on a separate

stack, via the sigaltstack system call and by registering signal handlers with the

SA ONSTACK flag. HiPE, MLton, and Poly/ML all use this solution. No such workaround

appears to be possible for Windows, so there the options seem limited to either include

a scratch area at the bottom of the stack (the solution used by Poly/ML), or to abandon

using the native stack at all (the solution used by MLton).

– Synchronous calls to code written in some other language, such as C library routines,

are also susceptible to stack overflow if the stack is dynamically allocated and explicitly

managed. If this is the case, then those calls should be implemented such that a stack

switch is performed to the standard C stack before the call, followed by a switch back

afterwards.

After the stack switch the actual parameters must also be adjusted if the parameter pass-

ing conventions differ between the functional language and C. Passing most parameters

in registers reduces this cost, even more so on AMD64 than x86 since C on AMD64

takes up to six integer parameters in registers.

HiPE on AMD64 passes parameters in the same registers as C, which avoids having

to copy the parameters at (its frequent) calls to C procedures. On x86, HiPE passes

parameters in registers which are then simply pushed on the C stack before a call to C;

this is cheaper than copying them from memory cells on the Erlang stack.

6 Performance Evaluation

The performance evaluation was conducted on a desktop machine with a 2GHz Athlon64

processor, 1GB of RAM and 1MB of L2 cache, running Fedora Core 2 Linux in 64-bit mode.

Measurements for x86 code were obtained by running that code in compatibility mode on the

same machine. The Linux kernel has been updated with the perfctr kernel extension [12],

which provides per-process access to the processor-specific performance monitoring coun-

ters. This allows us to accurately measure runtime performance based on the number of clock

cycles, obtain information about branch misprediction rates, compute CPI, and so on.

In figures and tables, all reported code sizes are in bytes. Runtime performance, when-

ever not explicitly shown in clock cycles, has been normalized so that in charts the lower

the bar, the better the performance. The characteristics of the nine benchmark programs are

as follows: three of them (barnes2, float bm, and pseudoknot) are floating-point inten-

sive, one of them (descrypt) manipulates mostly bytes as it implements the DES encryp-

tion/decryption algorithm, and the remaining five manipulate integers, strings, and structured

terms such as lists and trees. One benchmark, md5, creates large numbers of 32-bit integers.

When tagged, they do not fit in 32-bit machine words, so on x86 they are boxed and stored on

the heap as “bignums”. They do fit in 64-bit machine words however, providing a significant

advantage for AMD64.

6.1 Code Size Increase

Object code size typically increases on AMD64 compared with x86, but decreases are also

possible due to e.g., the availability of more registers which results in less code for han-

dling spilled temporaries. In HiPE/AMD64, the bulk of the code increase is due to the REX

prefixes needed to generate 64-bit instructions and access the high registers. The rest of the

increase is due to larger immediate offsets (for example, stack frames are often larger, requir-

ing 32-bit offsets instead of 8-bit offsets when accessing data on the stack), and accessing

11

��������� �	
���
��� ������������ ���������� � ����� � � ��		 � ���������� �������� � ��� � ��������

�

����

�����

�����

�����

�����

�����

�����

�����

���

�����

���

�
�
�
�
�
�
�

������
������

��!���

Fig. 1. Code size on x86 vs. AMD64 (size due to REX prefixes explicitly shown).

64-bit constants (which require a move to a register before each use). As can be seen in Fig. 1,

the code size increase is moderate and mostly due to REX prefixes. Percentage-wise, the size

of REX prefixes is between 12–17% of the total AMD64 code for all benchmarks.12 Since

these benchmark programs are quite small, we also show the code size for a larger program,

megaco (Media Gateway Controller). It also confirms these numbers.

6.2 Running 32-bit vs. 64-bit Applications

With this experiment we try to determine whether it is worth developing a native code com-

piler for AMD64 in the first place. A main advantage of AMD64 machines is that they can

run 64-bit operating systems and 32-bit x86 machine code in compatibility mode. So, if one

is not interested in having a 64-bit address space, why not simply run the code in this mode?

Even though there are drawbacks (for example, only 8 registers are available), even in com-

patibility mode, an AMD64 runs at full speed (i.e., no emulation is involved).

Since the answer to this question very much depends on the sophistication of the com-

piler, we offer two views. Figure 2 shows performance of AMD64 vs. x86 code when using

two different register allocators and keeping every other backend component the same. It is

clear that the 64-bit mode is a winner. It behaves better when the allocator cannot prevent

spilling on x86 (such is the case when using linear scan). It also provides better performance

in programs which manipulate bytes (descrypt) and large integers (md5) as it avoids the re-

strictions of the x86. On the other hand, there are programs (e.g., smith and prettypr) where

the performance is slightly worse on 64-bit mode due to pointer-based data structures such

as lists and records becoming larger, and thus placing additional burdens on the memory and

cache subsystems.

6.3 Choice of Register Allocator

The HiPE compiler is one of the few native code compilers with a choice of three global

register allocators: one based on iterated register coalescing [6], a Briggs-style graph col-

12 For comparison, Appendix A.1 shows code size increase in programs generated using gcc.

12

Benchmark 64-bit mode 32-bit mode Ratio

descrypt 394450329 417732104 0.94

smith 1124120607 975115035 1.15

huff 2824795743 2817767486 1.00

prettypr 982338705 838201998 1.17

decode 2147561421 2325866898 0.92

md5 231344119 2062041044 0.11

(a) Using iterated register coalescing

Benchmark 64-bit mode 32-bit mode Ratio

descrypt 414822324 739868823 0.56

smith 1292385208 1744318644 0.74

huff 2797567542 3118378476 0.90

prettypr 1019246428 1039895068 0.98

decode 2160353131 2694052200 0.80

md5 265340924 2150536420 0.12

(b) Using linear scan register allocator

Fig. 2. Performance (clock cycles) of native 64-bit vs. 32-bit applications (i.e., x86 code).

oring allocator [3], and a linear scan register allocator [14, 15]. There is also a naı̈ve al-

locator which keep temporaries in memory and only loads them into registers locally on a

per-instruction basis; it however avoids loading temporaries when instructions can accept

explicit memory operands. All four allocators were ported to AMD64.

Figure 3 shows normalized (w.r.t. the naı̈ve allocator) performance results when varying

the choice of allocator on AMD64 and x86. As can be seen, on both architectures, global

register allocation really pays off; see e.g. descrypt.13 On the other hand, since AMD64

has twice as many registers as x86, even a low-complexity algorithm such a linear scan pro-

vides decent performance and is competitive with graph coloring algorithms, which require

significantly longer time to perform the allocation.

��������	 �
���	 �
��	 ��������	 ������	
��	

�

��

��

��

��

��

��

��

��

��

���

	����������	 	������	����	 	�����	�����	 	�����

�

(a) On AMD64

�������� �	
�� ��

 �������� ������ 	��

�

��

��

��

��

��

��

��

��

��

���

�������
�� �
��������� ����������� ��
��

�

(b) On x86

Fig. 3. Normalized performance of varying the register allocation algorithm on AMD64 and x86.

6.4 Reserving Registers for Parameter Passing

As can be seen in Fig. 4, choosing the right number of registers for parameter passing non-

trivial. With the exception of md5 whose performance improves by about 15%, the differ-

ences in performance (which is shown normalized w.r.t. using zero registers for parameter

passing) are rather small. Since, as mentioned in Sect. 4.4, there may be other considerations

(e.g. calling foreign code) when choosing the number of registers for parameter passing, we

recommend taking these into account and choosing a number between 3 and 5.

13 As can be seen in Fig. 6 (Appendix A.2), it also reduces the size of the generated native code.

13

descrypt smith huff prettypr decode md5

70

75

80

85

90

95

100

105

0

1

2

3

4

5

6

%

Fig. 4. Normalized performance varying the number of reserved registers for parameter passing.

6.5 Floating-Point Arithmetic

As can be seen in Table 1, there is a definite advantage to using SSE2 instead of x87 for

floating-point on AMD64. Erlang is not ideal for numerical applications: FP values are heap-

allocated and never passed in registers, and FP register temporaries are short-lived, but even

so there is still a moderate speedup by using SSE2.

Table 1. Performance comparison of SSE2 vs. x87 stack on AMD64.

Clock cycles Code size

Benchmark using SSE2 using x87 SSE2/x87 SSE2 x87

barnes2 672921992 679159760 0.99 15828 16928

float bm 601989479 792802467 0.76 2564 2468

pseudoknot 192459474 200751883 0.96 36880 38056

6.6 Use of Native Stack Pointer or Not

We saved the best for last. Figure 5 shows the branch misprediction rates on AMD64 and

x86 when using the hardware-supported native stack vs. simulating the stack with a general-

purpose register. Again, the message is clear: use of the native stack reduces the num-

ber of branch mispredictions14 and executed clock cycles (data shown in Appendix A.3).

Performance-wise, it pays off.

7 Related Work and Systems

The GNU Compiler Collection has mature support for AMD64 [7]. For AMD64 it includes

optimizations such as: using direct move instructions instead of push or pop when changing

the stack, preferring SSE2 over x87, using only the low 64 bits of SSE2 registers when possi-

ble, defaulting to a small code model, and replacing small 8 or 16-bit loads with 32-bit loads

and explicit zero extensions. Instruction scheduling is implemented but found to be valuable

mostly to SSE2 code. For calling conventions, gcc is bound to follow the ABI [8]. Both Intel

and The Portland Group have released commercial C/C++/Fortran compilers with AMD64

14 The lower branch misprediction rate for md5 on AMD64 vs. x86 when using native stack is due to

AMD64 not having to handle bignums by calling C routines.

14

��������		 �
���	 �
��	 ��������	 ������	
��	

�

�

�

�

�

�

�

�

�
	�����	������	

	�����	��

�����	

	

	 ��	������

	 ��	��

�����

!

Fig. 5. Branch misprediction rates when using native vs. simulated stack.

support, but no detailed documentation about their implementation strategies appears to be

available.

In the area of functional or declarative languages, very few directly support native code

on AMD64 (we do not consider those that compile via C). The only one we know of to have

mature AMD64 support, apart from HiPE, is O’Caml [10]. On AMD64, O’Caml passes 10

arguments in registers, uses the native stack, and reserves two registers for global variables:

the heap pointer and the current exception handler. Its x86 backend passes 6 arguments in

registers, uses the native stack, and reserves no registers for global variables. A straight-

forward graph coloring register allocator is used for both backends. The Glasgow Haskell

Compiler has a preliminary AMD64 backend, but it currently does not implement any regis-

ter allocation for AMD64.

8 Concluding Remarks

Although not as challenging as the IA64, AMD64 is a new 64-bit platform that offers a

unique opportunity to compiler writers: the chance to “super size” their existing x86 backend

with moderate effort. In this paper, we have described in detail how one can migrate an

existing x86 backend to AMD64 and the issues that need to be addressed in order to obtain

an efficient AMD64 backend. There are good indications that in the near future AMD64

machines might become as commonplace as x86 machines are today. If so, sooner-or-later,

existing native code compilers will need to adapt to this architecture. We hold that our advice

and measurements provide valuable guidance to those wishing to develop such a backend.

Acknowledgments

This research and the development of the AMD64 backend of HiPE have been supported in part by

VINNOVA through the ASTEC (Advanced Software Technology) competence center as part of a

project in cooperation with Ericsson and T-Mobile.

References

1. AMD Corporation. AMD64 Architecture Programmer’s Manual, Sept. 2003. Publication # 24592,

24593, 24594, 26568, 26569.

15

2. AMD Corporation. Software Optimization Guide for AMD AthlonTM 64 and AMD OpteronTM

64 Processors, Sept. 2003. Publication # 25112, Revision 3.03.

3. P. Briggs, K. D. Cooper, and L. Torczon. Improvements to graph coloring register allocation. ACM

Trans. Prog. Lang. Syst., 16(3):428–455, May 1994.

4. R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck. Efficiently computing

static single assignment form and the control dependence graph. ACM Trans. Prog. Lang. Syst.,

13(4):451–490, Oct. 1991.

5. R. K. Dybvig. Three Implementation Models for Scheme. PhD thesis, Department of Computer

Science, University of North Carolina at Chapel Hill, 1987. Technical Report TR87-011. Available

from: http://www.cs.indiana.edu/scheme-repository/.

6. L. George and A. W. Appel. Iterated register coalescing. ACM Trans. Prog. Lang. Syst., 18(3):300–

324, May 1996.

7. J. Hubička. Porting GCC to the AMD64 architecture. In Proceedings of the GCC Developers

Summit, pages 79–105, May 2003.

8. J. Hubička, A. Jaeger, and M. Mitchell. System V Application Binary Interface, AMD64 Architec-

ture Processor Supplement. See www.x86-64.org.

9. E. Johansson, M. Pettersson, K. Sagonas, and T. Lindgren. The development of the HiPE system:

Design and experience report. Springer International Journal of Software Tools for Technology

Transfer, 4(4):421–436, Aug. 2003.

10. X. Leroy et al. The Objective Caml system release 3.07. INRIA, Sept. 2003. See also

http://caml.inria.fr/ocaml/.

11. T. Lindahl and K. Sagonas. Unboxed compilation of floating point arithmetic in a dynamically

typed language environment. In R. Peña and T. Arts, editors, Implementation of Functional Lan-

guages: Proceedings of the 14th International Workshop, volume 2670 of LNCS, pages 134–149.

Springer, Sept. 2002.

12. M. Pettersson. Linux x86 performance-monitoring counters driver. Available from:

http://user.it.uu.se/~mikpe/linux/perfctr/.

13. M. Pettersson, K. Sagonas, and E. Johansson. The HiPE/x86 Erlang compiler: System description

and performance evaluation. In Z. Hu and M. Rodrı́guez-Artalejo, editors, Proceedings of the Sixth

International Symposium on Functional and Logic Programming, volume 2441 of LNCS, pages

228–244, Berlin, Germany, Sept. 2002. Springer.

14. M. Poletto and V. Sarkar. Linear scan register allocation. ACM Trans. Prog. Lang. Syst., 21(5):895–

913, Sept. 1999.

15. K. Sagonas and E. Stenman. Experimental evaluation and improvements to linear scan register

allocation. Software – Practice and Experience, 33(11):1003–1034, Sept. 2003.

16. G. L. Steele Jr. LAMBDA: The ultimate declarative. MIT AI Memo 379, Massachusetts Institute

of Technology, Nov. 1976.

17. G. L. Steele Jr. Rabbit: a compiler for Scheme (a study in compiler optimization). MIT AI Memo

474, Massachusetts Institute of Technology, May 1978. Master’s Thesis.

18. M. N. Wegman and F. K. Zadeck. Constant propagation with conditional branches. ACM Trans.

Prog. Lang. Syst., 13(2):181–210, Apr. 1991.

16

A Additional Measurements

To support some claims in Sect. 6, we include additional measurements. The paper is self-

contained without them and they should not be considered part of the submission.

A.1 Code Size Increase

Table 2 shows the size of object files for some familiar Linux programs on AMD64. (We have

also included the beam executable which contains code for the abstract machine and runtime

system of Erlang/OTP.) These data were collected using the size, and objdump commands.

In the table, the “Code size” column shows the total size as reported by the size command

on AMD64 and the “REX%” column the part attributed to REX prefixes. The remaining

columns show increase of various sections compared with the corresponding object files on

x86. For example, the “text” increase is computed as (amd64 text − x86 text)/x86 text,
and similar calculations occur for obtaining numbers for “data”, “bss”, and “total”.15

Table 2. Size of C object files (generated by gcc 3.3.3) on AMD64.

AMD64 Increase compared with x86

Application Code size REX% text data bss total

xterm 314591 5.8% 13.1% 38.6% 4.1% 15.0%

beam 1659007 9.7% 30.0% 48.8% 84.1% 43.0%

gdb 2857930 6.6% 18.2% 88.4% 15.1% 19.4%

ddd 3260866 7.7% 0.6% 70.1% 33.8% 3.2%

emacs 6622446 10.1% 14.9% 66.3% 0.0% 50.5%

Things to note are that in code generated by gcc, the REX prefix percentage is slightly

less than the one we report in Sect. 6.1, but on the other hand, the total increase in code

size in object files is often much bigger than that between HiPE/x86 and HiPE/AMD64. (For

convenience, the data used to generate Fig. 1 are also shown in table form in Table 3.)

Table 3. Size of generated native code on x86 vs. AMD64.

x86 AMD64

Benchmark Code size Code size REX REX%

barnes2 14236 15828 2102 13.3%

float bm 2036 2564 295 11.5%

pseudoknot 31316 36880 5413 14.7%

descrypt 30008 35988 6137 17.1%

smith 5056 6208 960 15.5%

huff 10416 12964 2046 15.8%

prettypr 18916 24320 3658 15.0%

decode 6948 8940 1352 15.1%

md5 10044 13176 1846 14.0%

megaco 233320 289688 46340 16.0%

A.2 Choice of Register Allocator

The effect of the register allocation algorithm used on the size of the generated code on

AMD64 is shown in Fig. 6.

15 In Table 2, one can not directly compare the total size increase with the ‘REX%’, since the total

increase is based on the x86 code sizes and the ‘REX%’ is based on the AMD64 ones.

17

��������	 �
���	 �
��	 ��������	 ������	
��	

�

����

�����

�����

�����

�����

�����

�����

�����

�����

	����������	

	������	����	

	�����	�����	

	�����	

�
�
�
�
�
��
�

������

Fig. 6. Sizes of generated native code with different register allocators on AMD64.

A.3 Use of Native Stack Pointer or Not

Data in Tables 4 and 5 show more detailed measurements than those of Sect. 6.6. They

show the same branch misprediction rates as Fig. 5, but they also show runtime performance

based on the number of clock cycles. With the exception of huff on AMD64 whose clock

cycle increase we cannot fully explain (it is probably due to unlucky cache alignment), the

numbers reinforce the message that using the processor’s native stack rather than a simulated

one is a winner.

Table 4. Performance using a native stack vs. a simulated stack on AMD64.

Branch misprediction % Clock cycles

Benchmark native simulated native simulated ratio

descrypt 3.4 5.9 394450329 427570517 0.92

smith 2.4 7.4 1124120607 1508869465 0.75

huff 0.4 1.0 2824795743 2614481627 1.08

prettypr 4.7 6.4 982338705 1041787437 0.94

decode 3.7 4.5 2147561421 2268147888 0.95

md5 0.8 3.8 231344119 267420561 0.87

Table 5. Performance using a native stack vs. a simulated stack on x86.

Branch misprediction % Clock cycles

Benchmark native simulated native simulated ratio

descrypt 3.5 5.9 417732104 451400978 0.93

smith 1.5 7.8 975115035 1331622536 0.73

huff 0.4 0.9 2817767486 2845832068 0.99

prettypr 5.2 6.4 838201998 882885782 0.95

decode 3.2 3.8 2325866898 2463384521 0.94

md5 2.4 3.6 2062041044 2197177458 0.94

18

