
HiPE on AMD64

Daniel Luna
luna@update.uu.se

Mikael Pettersson
mikpe@it.uu.se

Konstantinos Sagonas
kostis@it.uu.se

Computing Science
Department of Information Technology

Uppsala University, Sweden

ABSTRACT
Erlang is a concurrent functional language designed for de-
veloping large-scale, distributed, fault-tolerant systems. The
primary implementation of the language is the Erlang/OTP
system from Ericsson. Even though Erlang/OTP is by de-
fault based on a virtual machine interpreter, it nowadays
also includes the HiPE (High Performance Erlang) native
code compiler as a fully integrated component.

This paper describes the recently developed port of HiPE
to the AMD64 architecture. We discuss technical issues that
had to be addressed when developing the port, decisions
we took and why, and report on the speedups (compared
with BEAM) which HiPE/AMD64 achieves across a range
of Erlang programs and how these compare with speedups
for the more mature SPARC and x86 back-ends.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors—Code gen-
eration; D.3.4 [Programming Languages]: Processors—
Incremental compilers; D.3.4 [Programming Languages]:
Processors—Run-time environments; D.3.2 [Programming
Languages]: Language Classifications—Applicative (func-
tional) languages

General Terms
Experimentation, Measurement, Performance

Keywords
Erlang, native code compilation, AMD64

1. INTRODUCTION
Erlang is a functional programming language which effi-

ciently supports concurrency, communication, distribution,
fault-tolerance, automatic memory management, and on-line
code updates [3]. It was designed to ease the development
of soft real-time control systems which are commonly de-
veloped by the telecommunications industry. Judging from

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Erlang’04, September 22, 2004, Snowbird, Utah, USA.
Copyright 2004 ACM 1-58113-918-7/04/0009 ...$5.00.

commercial applications written in Erlang and the increased
interest in the language, as witnessed e.g. by the number of
downloads and the level of activity on the Erlang mailing
list, the language is quite successful in this domain.

The most widely used implementation of the Erlang lan-
guage, the Erlang/OTP system from Ericsson, has been,
till recently, exclusively based on the BEAM virtual ma-
chine interpreter. This and the fact that Erlang is a dy-
namically typed language requiring runtime type tests make
the performance of Erlang programs quite slow compared
with “equivalent” programs written in other functional lan-
guages.

The HiPE native code compiler [9, 10]1 has been devel-
oped with the aim of reducing this performance gap. It
achieves this goal while allowing fine-grained, user-controlled
compilation of Erlang functions or modules to native ma-
chine code. As reported in [9], HiPE is currently the fastest
Erlang implementation and offers performance which is com-
petitive with other implementations of strict functional lan-
guages such as Bigloo Scheme or SML/NJ.

Before we started working on the project whose results we
report here, the latest open source release of Erlang/OTP
was R9C-0.2 The HiPE compiler is an integrated component
in that release and its available back-ends are for SPARC
V8+ and for x86, both running in 32-bit mode. As 64-bit
architectures offer significant advantages for large-scale ap-
plications (e.g., they allow a much less restricted address
space) and are becoming more and more widespread, we
wanted to develop a 64-bit back-end for HiPE. Although
we briefly considered IA-64 and SPARC64, our chosen plat-
form was the AMD64. Reasons for this choice were the
similarity of this platform with the x86 (see Section 2), its
upcoming importance,3 and the affordability of these ma-
chines. We have developed an AMD64 back-end for HiPE,
called HiPE/AMD64, running on Linux, and we report on
aspects of its implementation in this paper.

Contributions. Our first contribution is indirect and only
briefly described in the paper: As a by-product of our en-
gagement in this feat, we have cleaned up the Erlang/OTP
runtime system and improved its performance on 64-bit ar-
chitectures. Our second contribution is technical: We de-
scribe in detail the architecture, its design decisions, and

1
See also HiPE’s homepage: www.it.uu.se/research/group/hipe/.

2
Available at www.erlang.org.

3
About three months after we literally assembled an AMD Athlon 64

based PC by buying its parts individually on the net, Sun announced
its Sun Fire V20z server, the first in a new line of AMD Opteron 64
based servers from Sun; see www.sun.com/amd/.

solutions to technical issues that had to be addressed for
the development of HiPE/AMD64, and report on its perfor-
mance. Our final contribution, probably of more interest to
the vast majority of the Erlang community, is the system
itself which will be included in the upcoming open source
release of Erlang/OTP R10.

Organization. The rest of this paper starts with a brief
overview of characteristics of the AMD64 architecture (Sec-
tion 2) and continues with reviewing the organization of
the HiPE compiler in Section 3. The main part of this
paper describes the HiPE/AMD64 back-end in detail (Sec-
tion 5) and the support it requires from the runtime system
of Erlang/OTP (Section 4). Section 6 contains performance
results, while in Section 7 we list some advantages of disad-
vantages of AMD64 from the perspective of an Erlang user.
Finally, Section 8 finishes with some concluding remarks.

2. AN OVERVIEW OF AMD64
AMD64 is a family of general-purpose processors for server,

workstation, desktop, and notebook computers [1].
Architecturally, these processors are 64-bit machines, with

64-bit registers (16 integer and 16 floating-point) and 64-bit
virtual address spaces. An important feature is that they
are fully compatible with 32-bit x86 code. AMD64 proces-
sors can run 32-bit operating systems and applications, 64-
bit operating systems and applications, or 64-bit operating
systems with 32-bit applications.

A distinguishing implementation feature of the current
AMD64 processors is their integrated memory controllers,
which increase bandwidth and reduce latencies for memory
accesses. Another implementation feature is that the server
processors support multiprocessing (up to 8-way) without
the need for external support components, which reduces
the cost and complexity of such systems.

Although the design originated from AMD, Intel has an-
nounced that it will release software-compatible 64-bit pro-
cessors in the near future.4

2.1 Technical Summary
Here we summarize the technical aspects of AMD64 that

are relevant for compiler writers. Many of these are shared
with x86; differences from x86 are described later.

• Instructions are in 2-address form, i.e. dst op= src.
Although operating on registers is generally faster, most
instructions allow either dst or src, but not both, to
be memory operands. A memory operand is the sum of
a base register, a scaled index register, and a constant
offset, where most parts can be omitted.

• The AMD64 has 16 general-purpose registers and 16
floating-point registers, all 64-bit wide. Instructions on
32-bit integers automatically zero-extend their results
to 64 bits (32-bit operands are default on AMD64),
while instructions on 16 or 8-bit integers leave the
higher bits unchanged.

• The implementations use pipelining, and out-of-order
and speculative execution of instructions; this means
that branch prediction misses are expensive.

4
Intel calls this Intel r© EM64T (Extended Memory 64 Technology)

though; see www.intel.com/technology/64bitextensions/.

• The dynamic branch prediction hardware has a buffer
that remembers whether a given branch is likely to be
taken or not. When a branch is not listed in the buffer,
the static predictor assumes that backward branches
are taken, and forward branches are not taken.

• There is direct support for a call stack, pointed to by
the %rsp general purpose register, via the call, ret,
push and pop instructions.

• The return stack branch predictor has a small circular
buffer for return addresses. A call instruction pushes
its return address both on the stack and on this buffer.
At a ret instruction, the top-most element is popped
off the buffer and used as the predicted target of the
instruction.

• Instructions vary in size, from one up to fifteen bytes.
The actual instructions opcodes are usually one or two
bytes long, with prefixes and suffixes making up the
rest. Prefixes alter the behaviour of an instruction,
while suffixes encode its operands.

For code optimizations, there are a few general but im-
portant rules to obey (cf. also [2]):

1. Enable good branch prediction. Arrange code to follow
the static branch predictor’s rules. Ensure that each
ret instruction is preceded by a corresponding call

instruction: do not bypass the call stack or manipulate
the return addresses within it.

2. Many instructions have different possible binary en-
codings. In general, the shortest encoding maximizes
performance.

3. Keep variables permanently in registers when possible.
If this is not possible, it is generally better to use mem-
ory operands in instructions than to read variables into
temporary registers before each use.

4. Ensure that memory accesses are to addresses that are
a multiple of the size of the access: a 32-bit read or
write should be to an address that is a multiple of 4
bytes. Reads and writes to a given memory area should
match in address and access size.

2.2 Differences from x86
The main differences from x86, apart from widening reg-

isters and virtual addresses from 32 to 64 bits and doubling
the number of registers, concern instruction encoding, elim-
ination of some x86 restrictions on byte operations, and the
new floating-point model.

The x86 instruction encoding is limited to 3 bits for reg-
ister numbers, and 32 bits for immediate operands such as
code or data addresses. AMD64 follows the x86 encoding,
with one main difference: the REX prefix.

The REX prefix, when present, immediately precedes the
instruction’s first opcode byte. It has four one-bit fields, W,
R, X, and B, that augment the instruction’s x86 encoding.
As mentioned previously, even though AMD64 is a 64-bit
architecture, most instructions take 32-bit operands as de-
fault. The W bit in the REX prefix changes instructions to
use 64-bit operands. The R, X, and B bits provide a fourth
(high) bit in register number encodings, allowing access to

the 8 new registers not available in the x86. The REX pre-
fix uses the opcodes that x86 uses for single-byte inc and
dec instructions. On AMD64, these instructions must use a
two-byte encoding.

On AMD64 immediate operands, such as address or data
constants, are limited to 32 bits just as on x86. This means
that branches, calls, and memory accesses cannot directly
access arbitrary locations in the 64-bit address space; such
accesses must in general be indirect via a pointer register.
To simplify the construction of 64-bit constants, AMD64 has
a new instruction which takes a 64-bit immediate operand
and copies it into a specific register.

On AMD64 any general purpose register can be used in a
load or store operation accessing its low 8 bits. On x86 only
registers 0–3 can be used in this way, since register numbers
4–7 actually denote bits 8 to 15 in these registers in byte
memory access instructions.5

Every AMD64 processor implements the SSE2 floating-
point instruction set, which is register-oriented with 16 reg-
isters. x86 processors have traditionally used the x87 in-
struction set, which is based on an 8-entry stack. SSE2
benefits a compiler mainly because it avoids the restrictions
of the x87 stack; the 8 additional registers also help in code
with many floating-point variables.

3. HiPE: A BRIEF OVERVIEW
Since October 2001, HiPE is included as an integrated

component in the open source Erlang/OTP system. A high-
level view of its current architecture is shown in Figure 1.
As far as the Erlang/OTP system is concerned, the HiPE
component consists of three main parts:

1. the HiPE compiler which translates BEAM virtual ma-
chine bytecode to native machine code in either a just-
in-time or an ahead-of-time fashion;

2. the HiPE loader which loads the generated native code
on-the-fly or from a fat .beam file into the code area;
and

3. a set of extensions to the Erlang/OTP runtime sys-
tem to efficiently support mixing interpreted and na-
tive code execution, at the granularity of individual
Erlang functions.

In order to make this paper relatively self-contained, this
section briefly describes these parts. A more detailed system
description of HiPE can be found in [9, 10].

3.1 The HiPE Compiler
Currently, compilation to native code starts by disassem-

bling the bytecode generated by the BEAM compiler, and
representing it in the form of a symbolic version of the
BEAM virtual machine bytecode. This version is then trans-
lated to Icode, which is an idealized Erlang assembly lan-
guage. The stack is implicit, any number of temporaries
may be used, and temporaries survive function calls. Most
computations are expressed as function calls. All bookkeep-
ing operations, including memory management and process
scheduling, are implicit. Icode is internally represented in
the form of a control flow graph (CFG). In this stage var-
ious optimizations are done. First, there are passes that

5
In HiPE/x86, this restriction is currently worked around by always

using the %eax register in byte memory accesses.

handle some of the inlining of binary operations [8] and add
code for handling exceptions. Then the CFG is turned into
SSA form [6], where HiPE performs sparse conditional con-
stant propagation [18], dead code removal, and copy propa-
gation [12]. Finally, a type propagator eliminates type tests
whose outcome is statically determined, or pushes these tests
forward in the CFG to the point that they are really needed.

Icode is then translated into RTL, which is a generic (i.e.,
target-independent) three-address register transfer language,
but the code is target-specific, mainly due to the use of
platform-specific registers when accessing a process’ state,
differences in address computations, and some differences in
the built-in primitives. At this level almost all operations
are made explicit. For example, data tagging and untagging
is translated to appropriate machine operations (shift, or,
etc), data accesses are turned into loads and stores. Also
arithmetic operations, data constructions and type tests are
inlined.

Finally, RTL code is translated to the target back-end. As
shown in Figure 1, currently available back-ends of the HiPE
compiler are SPARC V8+, x86, or AMD64. The AMD64
back-end is described in Section 5.

Additions and changes for AMD64 on RTL. Although
performed at the level of a register transfer language, the
handling of arithmetic is word-size specific. For this reason,
a new module of the HiPE compiler was developed which
performs 64-bit arithmetic. Although conceptually this is
trivial, its implementation turned out quite tricky given that
“fixnums” are larger on AMD64.6

Various other cleanups were required: Although in prin-
ciple target-independent, RTL was contaminated by various
implicit assumptions about word size, which were unnoticed
on 32-bit machines. The offending places of RTL code had
to be identified, factored out, and moved to a generic ser-
vice module, parameterized by the target. For instance, all
bitmasks in tagging operations had to be extended to be
64 bits long, and some data structures needed to have their
size in words changed (most notably 64-bit floating point
numbers). Similarly, field offset computations needed to be
parametrized by the word size. More cleanups of this kind
were required for the creation of jump tables used in the
pattern matching compilation of case expressions.

3.2 The HiPE Loader
The HiPE loader is responsible for loading native code

into the code area of the Erlang/OTP runtime system and
for patching call sites in code which is already loaded to call
this code. Special care needs to be taken in order to preserve
the semantics of code replacement in Erlang, especially in
cases where interpreted and native code is freely intermixed;
see [10, Section 4.2] on how this is done. For AMD64, the
x86 loader was cloned and the required changes were limited
to being able to write 64-bit rather than 32-bit constants to
memory.

3.3 Extensions to the Runtime System
HiPE extends the standard Erlang/OTP runtime system

to permit Erlang processes to execute both interpreted code
and native machine code. In this respect, HiPE is probably

6
Erlang/OTP fixnums are integer values that fit in one word and

thus, with a 4 bit type tag, are 28 bits long on a 32-bit machine and
60 bits long on a 64-bit machine.

Erlang Run-Time System HiPE Compiler

BEAM
Interpreter

&
RTS

Code area

BEAM
Dissassembler

HiPE
Loader

BEAM
Bytecode

Other
Data

Native
Code

Symbolic
BEAM

Icode

RTL

SPARC X86 AMD64

HiPE
Extensions

Figure 1: Architecture of a HiPE-enabled Erlang/OTP system.

unique: We know of no other functional programming lan-
guage implementations that support mixing interpreted and
native code in an arbitrary way.

Each Erlang process has two stacks, one for interpreted
code and one for native code. As explained in [10], this
simplifies garbage collection and exception handling, since
each stack contains only frames of a single type. Control
flow between interpreted and native code, e.g. at function
calls and returns, is handled by a mode-switch interface.
The implementation uses linker-generated proxy code stubs
and software trap return addresses to trigger the appropriate
mode-switches when invoked. Two important properties of
the mode-switch interface are that it preserves tail-recursion
(i.e., no sequence of consecutive mode-switching tail calls
grows either stack by more than a constant), and that it im-
poses no runtime overhead on same-mode calls and returns
(i.e., from native to native or from BEAM to BEAM).

Changes to the runtime system for AMD64 are described
in the next section.

4. THE AMD64 RUNTIME SYSTEM
The Erlang/OTP runtime system is written in C, and con-

sists of the BEAM virtual machine interpreter, the garbage
collector, the Erlang process scheduler, and a large number
of standard Erlang functions implemented in C (the BIFs).

Large parts of the runtime system are written in machine-
independent C code and did not need changes for AMD64;
these include the mode-switch interface, BIFs used by the
native-code loader, BIFs used for debugging and perfor-
mance measurements, and some primitive operations used
by compiled code.

Other parts of the runtime system are machine-specific:

• The low-level code for transitions between the mode-
switch interface and compiled Erlang machine code.
This is implemented in hand-written assembly code,
invoked via a small interface written in C.

• The glue code for calling C BIFs from compiled Erlang
machine code. This is assembly code, generated by
running an m4 script on the list of BIFs.

• The code to traverse the call stack for garbage col-

lection and for locating exception handlers. This is
implemented in C.

• Creating native code stubs for Erlang functions that
have not yet been compiled to native code. This is
implemented in C.

• Applying certain types of patches to native code dur-
ing code loading. This is implemented in C.

In the AMD64 port, the C code for traversing the call
stack, as well as the C code between the mode-switch inter-
face and the low-level assembly glue code, is shared with the
x86 port. This is possible because the only relevant differ-
ence between AMD64 and x86 in this code is the word size,
and carefully written C code can adapt to that automati-
cally.

The C code for creating stubs and for applying patches
was rewritten for AMD64. In both cases this is because
the code creates or patches AMD64 instructions containing
64-bit immediates.

The m4 script generating assembly wrapper code around
C BIFs was rewritten for AMD64. The main reason for this
is that the wrappers are highly dependent on C’s calling
convention, and C uses different calling conventions on x86
and AMD64: on x86 all parameters are passed on the stack,
while on AMD64 the first six are passed in registers.7

The low-level glue code between the mode-switch inter-
face and compiled Erlang machine code was rewritten for
AMD64. Since this code is both called from C and calls C,
it is dependent on C’s calling conventions. There are also
some syntactic differences between x86 and AMD64 related
to the use of 64-bit operands and additional registers.

A Unix signal handler is typically invoked asynchronously
on the current stack. This is problematic for HiPE/AMD64
since each Erlang process has its own stack. These stacks are
initially very small, and grown only in response to explicit
stack overflow checks emitted by the compiler. To avoid
stack overflow due to signals, we redirect all signal handlers
to the Unix process’ “alternate signal stack”, by overriding
the standard sigaction() and signal() procedures with
our own versions. Doing this is highly system-dependent,

7
For more information see www.x86-64.org/abi.pdf

which is why HiPE/AMD64 currently only supports Linux
with recent glibc libraries. These issues are shared with
HiPE/x86, see [14] for more information.

HiPE/AMD64 shares roughly one third of its runtime
system code with HiPE/x86. The remaining two thirds
were copied from HiPE/x86 and then modified as described
above.

4.1 64-bit cleanups in Erlang/OTP
The common Erlang/OTP runtime system was, prior to

our work on AMD64, believed to be 64-bit clean. How-
ever, we discovered some limitations which we were forced
to eliminate. In particular, although Erlang term “handles”
and pointers to data had been widened to 64 bits, the rep-
resentation of integers (both small fixed-size integers and
heap-allocated “big” integers) was unchanged from the 32-
bit runtime system. This caused a major problem:

Efficient native code arithmetic relies on using the proces-
sor’s overflow flag to detect when fixnums must be converted
to bignums. For this to work, fixnums must be as wide as
machine words (minus the type tag), but Erlang still used
28-bit (32 bits minus 4 tag bits) fixnums on 64-bit machines.
Failure to detect overflow in the 28-bit representation made
native code produce fixnums where bignums should have
been produced, causing problems when fixnums were passed
from native code to BEAM.

To eliminate this problem we modified the Erlang/OTP
runtime system to use word-sized fixnums also on 64-bit
machines. Due to undocumented dependencies between the
representations of fixnums and bignums, and assumptions in
the code for hashing Erlang terms and for converting terms
to and from the external binary format, this required a sig-
nificant amount of work. In addition to being able to sup-
port native code on AMD64, the result is a cleaner runtime
system with less overhead and higher performance on 64-bit
machines. These changes will be part of the next release of
Erlang/OTP.

5. THE AMD64 BACK-END
The phases of the AMD64 back-end are shown in Figure 2.

In the HiPE compiler, the AMD64 intermediate representa-
tion is a simple symbolic assembly language. It differs from
RTL in two major ways:

• Arithmetic operations are in two-address form, with
the destination operand also being a source operand.
(i.e. x += y instead of x = x + y)

• Memory operands are allowed, in the form of base reg-
ister + register or constant.

Since the intermediate representation is based on con-
trol flow graphs instead of linear code, calls and conditional
branch instructions are pseudo-instructions that list all their
possible destinations. These pseudo-instructions are con-
verted to proper AMD64 instructions just before the code is
passed to the assembler; see Section 5.5.

5.1 RTL to AMD64 Translation
The conversion from RTL to AMD64 is mainly concerned

with converting RTL’s three-address instructions to two-
address form. This procedure is the same as for the x86
and is described in [14].

Register Allocation

RTL
AMD64

Frame Management

Code Linearization

Pseudo-instruction Expansion

Peephole Optimization

Assembling

RTL to AMD64 Translation

Figure 2: The AMD64 back-end of Fig. 1 in detail.

One problem is that AMD64 instructions cannot have im-
mediate operands larger than 32 bits, with the exception of
the new mov reg imm64 instruction. Therefore, when a 64-
bit constant occurs in an RTL instruction, a new temporary
register is allocated and code is generated to copy the con-
stant into the register. This must be done also for symbolic
constants that denote runtime addresses, such as references
to jump tables. This problem does not exist on x86 since its
32-bit immediates perfectly match its 32-bit word size.

5.2 Register Allocation
After translation from RTL, register allocation is per-

formed to map the usually large number of temporaries
(pseudo-registers) on to the machine’s actual registers.

Register allocation is typically performed in a loop. First
an attempt is made to allocate registers for the code. If
this fails because some temporaries were spilled (could not
be assigned to registers), the code is rewritten under the
assumption that those temporaries are in memory, and the
process continues with a new allocation attempt. Eventu-
ally, however, the allocation will succeed.

In general, if an instruction reads the value of a spilled
temporary, the code is rewritten to read the value from mem-
ory into a new temporary just before that instruction. If a
value is written to a spilled temporary, the code is rewrit-
ten to write the value to a new temporary, followed by an
instruction to write the new temporary to memory.

However, AMD64, like x86, allows either the source or
the destination of an instruction to be a memory operand.
If both operands are spilled, then one of them is rewritten
using a new temporary. If only one operand is spilled, then
no rewrite occurs and no new temporary is allocated. The
frame management pass later converts these spilled tempo-
raries to memory operands in the stack frame.

The main change in register allocation for AMD64 con-
cerns the treatment of floating-point variables. Tradition-
ally, x86 has used the x87 floating-point unit, which has
an 8-entry stack instead of individually accessible registers.
This requires additional analysis and transformations for

good performance on floating-point intensive programs [11].
AMD64 supports both x87 and the register-oriented SSE2
floating-point unit, with SSE2 being preferred for new code.
In HiPE, register allocation for SSE2 uses the same iterated
coalescing allocator used for general-purpose registers, but
with parameters which are specific for SSE2. HiPE/AMD64
can also target the x87 via a compile-time option, using the
same code as in HiPE/x86, but this is mainly intended for
testing and benchmarking.

A few minor changes for AMD64 reflect the changes in
intermediate representation over x86. Byte-level memory
accesses can use any general-purpose register on AMD64,
but on x86 we forced them to use %eax. An instruction was
added for moving a 64-bit immediate into a register, requir-
ing changes in the code computing def–use information, the
code which rewrites instructions when a temporary has been
spilled, and the code which applies the final temporary-to-
register mapping. The instruction used for indexing and
jumping via jump tables was changed to reference the jump
table via a register instead of using a 32-bit address con-
stant; this required similar changes as described above.

There are currently three production-quality register al-
locators available in HiPE/AMD64: one based on linear
scan [15, 16], a Briggs-style graph-coloring allocator [4], and
an iterated coalescing graph-coloring allocator [7]. The cur-
rent default is iterated coalescing, but the user can choose
between them using a compiler option.

5.3 Frame Management
After register allocation the back-end introduces stack

frames and the call stack, maps spilled temporaries to slots
in the stack frame, rewrites uses of spilled temporaries as
memory operands in the stack frame, creates stack descrip-
tors at call sites, and generates code to allocate, deallo-
cate, and rewrite stack frames at function entry, exit, and
at tailcalls. Algorithmically this code is the same as for
HiPE/x86 [14, Section 5.3], but it needed many changes to
work on AMD64.

The frame module for x86 assumed a 4-byte word size and
contained many size/offset constants (4 or 8) based on this
assumption. On AMD64, many of these had to be made
twice as large. This was done manually since the rôle of
each constant had to be checked first.

Eventually both the AMD64 and x86 frame modules were
cleaned up to base their calculations on a word size param-
eter. They are now identical, except for their references to
other architecture-specific modules, and for the treatment
of floating-point values which occupy two words on x86 but
only one word on AMD64. The two implementations could
be merged, but we have not done so yet.

5.4 Code Linearization
At this point the symbolic AMD64 code is in its final

form, but still represented as a control flow graph. To allow
the linearized code to match the static branch prediction
rules, we bias conditional branches as unlikely to be taken
(if necessary by negating their conditions and exchanging
their successor labels). The conversion from CFG to linear
code generates the most likely path first, and then appends
the code for the less likely paths. Conditional branches in
the likely path thus tend to be unlikely to be taken and in
the forward direction, which is exactly what we want.

This part of the compiler is identical to that for x86.

5.5 Pseudo-instruction Expansion
As mentioned earlier, calls and conditional branch instruc-

tions are pseudo-instructions that list all their possible des-
tinations. After linearization, we rewrite each as a normal
AMD64 instruction with no or only one label, followed by
an unconditional jump to the fall-through label.

This part of the compiler is identical to that for x86.

5.6 Peephole Optimization
Before assembling the code, peephole optimization is done

to perform some final cleanups. It, for instance, removes
jumps to the next instruction, which occur as an artifact
of the code linearization and pseudo-instruction expansion
steps, and also instructions that move a register to itself,
which occur as an artifact of the register allocation step.

This part of the compiler is similar to that for x86.

5.7 Assembling
The assembly step converts the symbolic assembly code to

binary machine code, and produces a loadable object with
the machine code, constant data, a symbol table, and the
patches needed to relocate external references.

This is a complex task on AMD64, so it is divided into
three distinct passes.

5.7.1 Pass 1: Instruction Translation
The first pass translates instructions from the idealized

form used in the back-end to the actual form required by
the AMD64 architecture. This is non-trivial:

1. First the types of an instruction’s operands (register,
memory, small constant, large constant) are identified.

2. Then the set of valid encodings of the operation with
those particular operand types is determined.

3. Among the valid encodings, the cheapest (generally
the shortest) one should be identified and chosen. This
involves knowing about special cases that can use bet-
ter encodings than the general case. For example,
adding a constant to %eax can be done with the stan-
dard opcode byte and a byte for the register operand,
or with an alternate opcode byte. The size of a con-
stant also matters, since many contexts allow a small
constant to be encoded as a single byte, where the
general case requires four bytes.

4. While searching for the best encoding of an instruc-
tion or its operands, care must be taken to observe
any restrictions that may be present. For instance, a
memory operand using %rsp or %r12 as a base register
must use an additional SIB byte in its encoding.

Other instruction-selection optimizations, such as using test

instead of cmp when comparing a register against zero, or us-
ing xor instead of mov to clear a register, are also worthwhile.
In HiPE/AMD64, they are done in the peephole optimiza-
tion step.

The main change from x86 is the handling of the new
SSE2 instructions, most of which are easy to encode. A new
case of operands had to be added for the mov instruction,
for when an integer register is converted and copied into a
floating-point register.

The floating point negation instruction needed major magic.
The AMD64 back-end takes an implementation shortcut and

represents it as a virtual negation instruction up to this
point. The problem is that SSE2 does not have such an
instruction. Instead, an xorpd instruction must be used to
toggle the sign bit in the floating-point representation. Con-
structing the appropriate bit pattern into another floating-
point register at this point would be very awkward. Instead,
the bit pattern is stored in a variable in the runtime system,
and the xorpd gets a memory operand that refers to the ad-
dress of this variable. However, this memory operand only
has 32 bits available for the address. Loading the full 64-bit
address into a general-purpose register is out of the question
since this runs after the register allocator. Here we are saved
by the HiPE/AMD64 code model, which restricts runtime
system addresses to the low 32 bits of the address space.
In hindsight, it is clear that floating-point negation should
have been handled in the pseudo-instruction expansion step
instead.

5.7.2 Pass 2: Optimizing branch instructions
Branch instructions have two forms, a short one with an

8-bit offset, and a long one with a 32-bit offset. The shorter
one is always preferable, since it reduces code size and im-
proves performance. AMD64 and x86 are identical in this
respect.

However, the offset in a branch instruction depends on
the sizes of the instructions between the branch and its tar-
get, and the sizes of branch instructions in that range may
depend on the sizes of other instructions, including the very
branch instruction we first considered. This is a classical
“chicken-and-egg” problem in assemblers for CISC-style ma-
chines, but one that has not received much research atten-
tion since the 1970’s.

To solve this problem, the HiPE assembler now uses Szy-
manski’s algorithm [17], which is fast and produces optimal
code. The algorithm is implemented in a generic module,
used by several of HiPE’s back-ends.

5.7.3 Pass 3: Instruction encoding
In the last pass the AMD64 instructions are translated

from symbolic to binary form. This pass also derives the
actual locations of all relocation entries.

In principle, this is straightforward: check each instruc-
tion and its operands against the permissible patterns as
specified in the AMD64 architecture manuals, select the first
that matches, and produce the corresponding sequence of
bytes.

The main changes from x86 concern 64-bit operations, the
additional registers, and detecting when to emit the new
REX prefix.

On x86, encoding an instruction is a simple sequential
process: after identifiying the types of the operands, a list
is constructed by concatenating the opcode byte(s), the en-
coding of the operands, and the encoding of any additional
immediate operands.

On AMD64, the REX prefix must precede the opcode,
but the need to use a REX prefix, and the data to store
in it, is not known until later when the operands have been
encoded. To handle this we insert partial REX “markers” in
the list of bytes when we detect that a REX prefix is needed,
for instance if one of the new registers is used. Afterwards,
the markers are extracted and removed from the list. If any
markers were found, they are combined to a proper REX
prefix, which is added at the front of the list. This approach

is taken because the compiler is written in Erlang, so it can-
not use side-effects to incrementally update a shared “REX
needed?” flag.

Both before and after pass 2, it is necessary to know the
size of each instruction, in order to construct the mapping
from labels to their offsets in the code. For x86, this tra-
verses instructions and their operands just like when encod-
ing them, except it only accumulates the number of bytes
needed for the encoding. For AMD64, this does not quite
work because of the REX prefixes, so we currently encode
the instruction and return the length of that list instead.

Additional changes had to be made to support SSE2 in-
structions, and to remove the few x86 instructions no longer
valid in 64-bit mode, but these changes were straightfor-
ward.

In principle the AMD64 encoding module could also be
used for x86, if checks are inserted to ensure that no REX
prefixes are generated. We have not done so yet, to minimise
the risk of adding bugs to the x86 back-end, but it would
probably simplify code maintenance.

6. PERFORMANCE EVALUATION
In order to evaluate the performance of the AMD64 port

of HiPE, we compare the speedups obtained on this platform
with those obtained by the more mature HiPE/SPARC and
HiPE/x86 back-ends.

6.1 Performance on a mix of programs
Characteristics of the Erlang programs used as bench-

marks in this section are summarized in Figure 3. As can be
seen in Figure 4, the speedups of HiPE/AMD64 compared
with BEAM are significant (ranging from 35% up to almost
8 times faster). Moreover, more often than not, they are
on par or better than those achieved by HiPE/SPARC and
HiPE/x86. Compared with the x86, whose back-end is sim-
ilar to AMD64, the obtained speedups are overall slightly
better, most probably due to having double the number
of registers. (The only outliers are tak, qsort, decode and
yaws, for which we currently can offer no explanation.)

The benchmark where the speedup is the smallest is life.
The obtained speedup is small because this program spends
most of its execution time in the process scheduler, which
is part of the runtime system of Erlang/OTP (written in
C) that is shared across BEAM and HiPE. The bench-
mark where overall the speedup is biggest, prettypr, recurses
deeply and creates a stack of significant size. As such, it
benefits from generational stack collection [5] which is per-
formed by HiPE’s extension to the runtime system (aided
by stack descriptors that the HiPE compiler generates), but
not when executing BEAM bytecode.

6.2 Performance on programs manipulating
binaries

The binary syntax [13] has been an important addition to
the Erlang language and nowadays many telecommunication
protocols have been specified using it. An efficient compila-
tion scheme of Erlang’s bit syntax to native code has been
presented in [8].

Speedups on programs manipulating binaries are shown
in Figure 5. They show more or less the same picture as
Figure 4 with the exception of descrypt (a DES encryp-
tor/decryptor), which shows significantly higher speedups
running in native code. The reason is that this program

fib A recursive Fibonacci function. Uses integer arithmetic to calculate fib(30) 30 times.

tak Takeuchi function, uses recursion and integer arithmetic intensely. 1,000 repetitions of computing tak(18,12,6).

length A tail-recursive list length function finding the length of a 2,000 element list 50,000 times.

qsort Ordinary quicksort. Sorts a short list 100,000 times.

smith The Smith-Waterman DNA sequence matching algorithm. Matches a sequence against 100 others; all of length 32.
This is done 30 times.

huff A Huffman encoder which encodes and decodes a 32,026 character string 5 times.

decode Part of a telecommunications protocol. 500,000 repetitions of decoding an incoming message. A medium-sized
benchmark (≈ 400 lines).

life A concurrent benchmark executing 10,000 generations in Conway’s game of life on a 10 × 10 board where each square is
implemented as a process. This benchmark spends most of its time in the scheduler.

yaws An HTML parser from Yaws (Yet another Web server) parsing a small HTML page 100,000 times.

prettypr Formats a large source program for pretty-printing, repeated 4 times. Recurses very deeply. A medium-sized
benchmark (≈ 1, 100 lines).

estone Computes an Erlang system’s Estone ranking by running a number of common Erlang tasks and reporting a weighted
ranking of its performance on these tasks. This benchmark stresses all parts of an Erlang implementation, including its
runtime system and concurrency primitives.

Figure 3: Description of benchmark programs used in Figure 4.

��� ��� ��	
�� ���� ���� ���� ������ ���� ��� �������� �����	�

�

�

�

�

�

�

�

�

!"#$%%%

&'#()

* �

#$+��

Figure 4: HiPE vs. BEAM speedups across different platforms.

manipulates mostly bytes and benefits from HiPE’s type an-
alyzer which in this case is able to infer that arithmetic oper-
ations on bytes will never overflow or result in a bignum. Be-
cause of severe limitations on the number of registers which
can be used for byte operations on x86, the obtained speedup
is significantly smaller on this platform compared with those
on the SPARC and on AMD64.

6.3 Performance on programs manipulating
floats

Floats are not extremely common in “typical” Erlang ap-
plications, but as the range of uses of the Erlang/OTP sys-
tem is expanding, they are crucial for some “non-standard”
Erlang uses; e.g. for Wings3D. Moreover, the representation
of floats differs significantly between a 32-bit and a 64-bit
machine. So, we were curious to see the performance of
HiPE/AMD64 on floating-point intensive programs.

Figure 6 shows the obtained results. As can be seen, the
speedups on all program are better on AMD64 than on x86,
due to less memory accesses and having double the number
of available FP registers. The float bm benchmark, which

requires more than 16 registers, achieves a better speedup
on SPARC.

7. AMD64 AS A TARGET MACHINE
Some of the benefits the AMD64 brings over the x86, in

general and to Erlang users in particular, include:

• More registers (twice as many as x86) which improves
runtime performance by increasing the chance that a
compiler will be able to keep an important value in a
register as opposed to accessing it in memory.

• Uniform support for byte-level accesses for all integer
registers. This improves performance for bit-syntax
operations since it eliminates the awkward limitations
in the x86.

• Much larger range for fixnums. Since a majority of
bit-syntax integer matching operations are for integers
less than 60 bits wide, the compiler can generate faster
code for these since it knows the results will be repre-
sentable as fixnums.

��������	� ���
�	�
� �����	�
� ����
�	�
� ������	�
�
�	�
���
��	����

�

�

�

�

�

�

�

�

�

��

��

�

��

�������

��� !

���

��"��

Figure 5: HiPE vs. BEAM speedups on programs manipulating binaries.

������ ����	
��
� �
�����

�

�

�

�

�

�

�������

�����

 !"

��#"�

Figure 6: HiPE vs. BEAM speedups on programs
manipulating floats.

• Faster operations on big integers. Bignums are repre-
sented as sequences of small integers, each half the size
of the machine’s word size, and arithmetic operations
are performed on one such integer at a time. A larger
word size means that fewer operations are needed when
performing arithmetic on a given bignum.

• Larger address space, both virtual and physical, al-
lowing Erlang to work on e.g. large memory-resident
databases.

There is one generic drawback of 64-bit machines over
32-bit machines, viz. that pointer-based data structures
such as lists and tuples become twice as large, placing addi-
tional burdens on the memory and cache subsystems. It is
possible that a “small data” model which restricts pointers
and fixnums to 32-bit values may offer the best performance
for some applications. We intend to investigate the expected
performance benefits of this model.

8. CONCLUDING REMARKS
This paper has described the HiPE/AMD64 compiler: its

architecture, design decisions, technical issues that had to
be addressed and their implementation. As shown by its
performance evaluation, HiPE/AMD64 results in noticeable

speedups compared with interpreted code across a range of
Erlang programs. Quite often, the obtained speedups are
better than those achieved by HiPE/SPARC and HiPE/x86.

HiPE/AMD64, which will be included in the upcoming
R10 release of Erlang/OTP system, is the first 64-bit native
code compiler for Erlang. However, since 64-bit machines
are here to stay, HiPE/AMD64 is most probably not the
last compiler of this kind.

9. ACKNOWLEDGMENTS
The development of HiPE/AMD64 has been supported

in part by VINNOVA through the ASTEC (Advanced Soft-
ware Technology) competence center as part of a project in
cooperation with Ericsson and T-Mobile.

10. REFERENCES
[1] AMD Corporation. AMD64 Architecture

Programmer’s Manual, Sept. 2003. Publication #
24592, 24593, 24594, 26568, 26569.

[2] AMD Corporation. Software Optimization Guide for
AMD AthlonTM 64 and AMD OpteronTM 64
Processors, Sept. 2003. Publication # 25112, Revision
3.03.

[3] J. Armstrong, R. Virding, C. Wikström, and
M. Williams. Concurrent Programming in Erlang.
Prentice Hall Europe, Herfordshire, Great Britain,
second edition, 1996.

[4] P. Briggs, K. D. Cooper, and L. Torczon.
Improvements to graph coloring register allocation.
ACM Trans. Prog. Lang. Syst., 16(3):428–455, May
1994.

[5] P. Cheng, R. Harper, and P. Lee. Generational stack
collection and profile-driven pretenuring. In
Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation,
PLDI’98, pages 162–173, New York, N.Y., 1998. ACM
Press.

[6] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman,
and F. K. Zadeck. Efficiently computing static single
assignment form and the control dependence graph.
ACM Trans. Prog. Lang. Syst., 13(4):451–490, Oct.
1991.

[7] L. George and A. W. Appel. Iterated register
coalescing. ACM Trans. Prog. Lang. Syst.,
18(3):300–324, May 1996.

[8] P. Gustafsson and K. Sagonas. Native code
compilation of Erlang’s bit syntax. In Proceedings of
ACM SIGPLAN Erlang Workshop, pages 6–15. ACM
Press, Nov. 2002.

[9] E. Johansson, M. Pettersson, and K. Sagonas. HiPE:
A High Performance Erlang system. In Proceedings of
the ACM SIGPLAN Conference on Principles and
Practice of Declarative Programming, pages 32–43,
New York, NY, Sept. 2000. ACM Press.

[10] E. Johansson, M. Pettersson, K. Sagonas, and
T. Lindgren. The development of the HiPE system:
Design and experience report. Springer International
Journal of Software Tools for Technology Transfer,
4(4):421–436, Aug. 2003.

[11] T. Lindahl and K. Sagonas. Unboxed compilation of
floating point arithmetic in a dynamically typed
language environment. In R. Peña and T. Arts,
editors, Implementation of Functional Languages:
Proceedings of the 14th International Workshop,
number 2670 in LNCS, pages 134–149. Springer, Sept.
2002.

[12] S. S. Muchnick. Advanced Compiler Design &
Implementation. Morgan Kaufman Publishers, San
Fransisco, CA, 1997.

[13] P. Nyblom. The bit syntax - the released version. In
Proceedings of the Sixth International Erlang/OTP
User Conference, Oct. 2000. Available at
http://www.erlang.se/euc/00/.

[14] M. Pettersson, K. Sagonas, and E. Johansson. The
HiPE/x86 Erlang compiler: System description and
performance evaluation. In Z. Hu and
M. Rodŕıguez-Artalejo, editors, Proceedings of the
Sixth International Symposium on Functional and
Logic Programming, number 2441 in LNCS, pages
228–244, Berlin, Germany, Sept. 2002. Springer.

[15] M. Poletto and V. Sarkar. Linear scan register
allocation. ACM Trans. Prog. Lang. Syst.,
21(5):895–913, Sept. 1999.

[16] K. Sagonas and E. Stenman. Experimental evaluation
and improvements to linear scan register allocation.
Software – Practice and Experience, 33(11):1003–1034,
Sept. 2003.

[17] T. G. Szymanski. Assembling code for machines with
span-dependent instructions. Communications of the
ACM, 21(4):300–308, Apr. 1978.

[18] M. N. Wegman and F. K. Zadeck. Constant
propagation with conditional branches. ACM Trans.
Prog. Lang. Syst., 13(2):181–210, Apr. 1991.

